飞机游戏五 强化学习算法库
飞机游戏五 强化学习算法库
目录
一 stable-baseline3
介绍
利用stable-baselines3优雅便捷地玩转深度强化学习算法 - 知乎 (zhihu.com)
项目地址
提供算法及适用场景
Implemented Algorithms
| Name | Recurrent | Box |
Discrete |
MultiDiscrete |
MultiBinary |
Multi Processing |
|---|---|---|---|---|---|---|
| ARS1 | ❌ | ✔️ | ✔️ | ❌ | ❌ | ✔️ |
| A2C | ❌ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
| DDPG | ❌ | ✔️ | ❌ | ❌ | ❌ | ✔️ |
| DQN | ❌ | ❌ | ✔️ | ❌ | ❌ | ✔️ |
| HER | ❌ | ✔️ | ✔️ | ❌ | ❌ | ❌ |
| PPO | ❌ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
| QR-DQN1 | ❌ | ❌ | ✔️ | ❌ | ❌ | ✔️ |
| RecurrentPPO1 | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
| SAC | ❌ | ✔️ | ❌ | ❌ | ❌ | ✔️ |
| TD3 | ❌ | ✔️ | ❌ | ❌ | ❌ | ✔️ |
| TQC1 | ❌ | ✔️ | ❌ | ❌ | ❌ | ✔️ |
| TRPO1 | ❌ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
| Maskable PPO1 | ❌ | ❌ | ✔️ | ✔️ | ✔️ | ✔️ |
1: Implemented in SB3 Contrib GitHub repository.
Actions gym.spaces:
Box: A N-dimensional box that containes every point in the action space.Discrete: A list of possible actions, where each timestep only one of the actions can be used.MultiDiscrete: A list of possible actions, where each timestep only one action of each discrete set can be used.MultiBinary: A list of possible actions, where each timestep any of the actions can be used in any combination.
二 小雅 ElegantRL
介绍
小雅 ElegantRL: 基于PyTorch的轻量-高效-稳定的深度强化学习框架 - 知乎 (zhihu.com)
项目地址
GitHub - AI4Finance-Foundation/ElegantRL: Cloud-native deep reinforcement learning. 🔥
提供算法及适用场景
ElegantRL implements the following model-free deep reinforcement learning (DRL) algorithms:
DDPG, TD3, SAC, PPO, REDQ for continuous actions in single-agent environment,
DQN, Double DQN, D3QN for discrete actions in single-agent environment,
QMIX, VDN, MADDPG, MAPPO, MATD3 in multi-agent environment.
项目架构

本文来自博客园,作者:{珇逖},转载请注明原文链接:https://www.cnblogs.com/zuti666/p/16967224.html

浙公网安备 33010602011771号