CodeForces 1924E Paper Cutting Again
印度出题人玩原神玩的吧???
考虑计算每条折线被选的概率。考虑相当于是有一个 \(1 \sim n + m - 2\) 的排列 \(p\),然后一条 \(x = i\) 的直线被选且不是最后一个被选的,当且仅当它在 \(p\) 中排在 \(x = 1 \sim i - 1\) 和 \(y = 1 \sim \left\lfloor\frac{k}{i}\right\rfloor\) 之前。\(y = i\) 则类似。
一个 \(1 \sim N\) 的排列中,\(M\) 个数中一个数在其他 \(M - 1\) 个数前面的概率是 \(\frac{1}{M}\)。于是我们能很轻松地枚举每条 \(x = i\) 和 \(y = i\) 的直线计算答案。总时间复杂度 \(O(n + m)\)。
code
// Problem: E. Paper Cutting Again
// Contest: Codeforces - Codeforces Round 921 (Div. 1)
// URL: https://codeforces.com/problemset/problem/1924/E
// Memory Limit: 256 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mkp make_pair
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 2000100;
const int N = 2000000;
const ll mod = 1000000007;
ll inv[maxn], n, m, K;
inline void init() {
inv[1] = 1;
for (int i = 2; i <= N; ++i) {
inv[i] = (mod - mod / i) * inv[mod % i] % mod;
}
}
void solve() {
scanf("%lld%lld%lld", &n, &m, &K);
--K;
if (n * m <= K) {
puts("0");
return;
}
ll ans = 1;
for (int i = 1; i < n; ++i) {
ll j = min(K / i, m);
if (j == m) {
continue;
}
ans = (ans + inv[i + j]) % mod;
}
for (int i = 1; i < m; ++i) {
ll j = min(K / i, n);
if (j == n) {
continue;
}
ans = (ans + inv[i + j]) % mod;
}
printf("%lld\n", ans);
}
int main() {
init();
int T = 1;
scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}

浙公网安备 33010602011771号