洛谷 P4433 [COCI2009-2010#1] ALADIN
考虑一个前置问题:给定 \(a, b, n\),求 \(\sum\limits_{i = 1}^{n} (ia \bmod b)\)。
根据 \(x \bmod y = x - y \left\lfloor\frac{x}{y}\right\rfloor\) 可以化简式子:
\[\sum\limits_{i = 1}^{n} (ia \bmod b) = \sum\limits_{i = 1}^n ia - b \sum\limits_{i = 1}^n \left\lfloor\frac{ia}{b}\right\rfloor
\]
可以类欧计算。
考虑离散化后用线段树维护区间和,每个叶子结点代表离散化端点后相邻两点形成的区间。
区间修改时,给涉及到的点打形如 \((a, b, t)\) 的标记,表示这个点的和为 \(\sum\limits_{i = t}^{t + len - 1} (ia \bmod b)\)。下传是容易的。
时间复杂度 \(O(q \log q \log V)\)。
code
// Problem: P4433 [COCI2009-2010#1] ALADIN
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P4433
// Memory Limit: 64 MB
// Time Limit: 8000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mkp make_pair
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef __int128 lll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 100100;
ll n, m, lsh[maxn], tot;
struct wwh {
ll op, l, r, a, b;
} qq[maxn];
struct node {
lll cntx, cnty, sum;
node(lll a = 0, lll b = 0, lll c = 0) : cntx(a), cnty(b), sum(c) {}
};
inline node operator + (const node &a, const node &b) {
node res;
res.cntx = a.cntx + b.cntx;
res.cnty = a.cnty + b.cnty;
res.sum = a.sum + b.sum + a.cnty * b.cntx;
return res;
}
inline node qpow(node a, lll p) {
node res;
while (p) {
if (p & 1) {
res = res + a;
}
a = a + a;
p >>= 1;
}
return res;
}
node solve(lll p, lll q, lll r, lll n, node a, node b) {
if (!n) {
return node();
}
if (p >= q) {
return solve(p % q, q, r, n, a, qpow(a, p / q) + b);
}
lll cnt = (n * p + r) / q;
if (!cnt) {
return qpow(b, n);
}
return qpow(b, (q - r - 1) / p) + a + solve(q, p, (q - r - 1) % p, cnt - 1, b, a) + qpow(b, n - (q * cnt - r - 1) / p);
}
inline lll calc1(lll p, lll q, lll r, lll n) {
node a(0, 1), b(1, 0);
node ans = qpow(a, r / q) + solve(p, q, r % q, n, a, b);
return ans.sum;
}
inline lll calc2(lll a, lll b, lll n) {
lll s1 = n * (n + 1) / 2 * a;
lll s2 = calc1(a, b, 0, n) * b;
return s1 - s2;
}
inline lll calc2(lll a, lll b, lll l, lll r) {
return calc2(a, b, r) - calc2(a, b, l - 1);
}
namespace SGT {
struct node {
ll a, b, t;
node(ll x = 0, ll y = 0, ll z = 0) : a(x), b(y), t(z) {}
} tag[maxn << 2];
ll sum[maxn << 2];
inline void pushup(int x) {
sum[x] = sum[x << 1] + sum[x << 1 | 1];
}
inline void pushdown(int x, int l, int r) {
if (!tag[x].b) {
return;
}
int mid = (l + r) >> 1;
sum[x << 1] = calc2(tag[x].a, tag[x].b, tag[x].t, tag[x].t + lsh[mid + 1] - lsh[l] - 1);
sum[x << 1 | 1] = calc2(tag[x].a, tag[x].b, tag[x].t + lsh[mid + 1] - lsh[l], tag[x].t + lsh[r + 1] - lsh[l] - 1);
tag[x << 1] = node(tag[x].a, tag[x].b, tag[x].t);
tag[x << 1 | 1] = node(tag[x].a, tag[x].b, tag[x].t + lsh[mid + 1] - lsh[l]);
tag[x] = node();
}
void update(int rt, int l, int r, int ql, int qr, ll a, ll b) {
if (ql <= l && r <= qr) {
tag[rt] = node(a, b, lsh[l] - lsh[ql] + 1);
sum[rt] = calc2(a, b, lsh[l] - lsh[ql] + 1, lsh[r + 1] - lsh[ql]);
return;
}
pushdown(rt, l, r);
int mid = (l + r) >> 1;
if (ql <= mid) {
update(rt << 1, l, mid, ql, qr, a, b);
}
if (qr > mid) {
update(rt << 1 | 1, mid + 1, r, ql, qr, a, b);
}
pushup(rt);
}
ll query(int rt, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) {
return sum[rt];
}
pushdown(rt, l, r);
int mid = (l + r) >> 1;
ll res = 0;
if (ql <= mid) {
res += query(rt << 1, l, mid, ql, qr);
}
if (qr > mid) {
res += query(rt << 1 | 1, mid + 1, r, ql, qr);
}
return res;
}
}
void solve() {
scanf("%lld%lld", &n, &m);
for (int i = 1; i <= m; ++i) {
scanf("%lld%lld%lld", &qq[i].op, &qq[i].l, &qq[i].r);
if (qq[i].op == 1) {
scanf("%lld%lld", &qq[i].a, &qq[i].b);
}
lsh[++tot] = qq[i].l;
lsh[++tot] = (++qq[i].r);
}
sort(lsh + 1, lsh + tot + 1);
tot = unique(lsh + 1, lsh + tot + 1) - lsh - 1;
for (int i = 1; i <= m; ++i) {
qq[i].l = lower_bound(lsh + 1, lsh + tot + 1, qq[i].l) - lsh;
qq[i].r = lower_bound(lsh + 1, lsh + tot + 1, qq[i].r) - lsh;
}
for (int i = 1; i <= m; ++i) {
ll op = qq[i].op, l = qq[i].l, r = qq[i].r, a = qq[i].a, b = qq[i].b;
if (op == 1) {
SGT::update(1, 1, tot - 1, l, r - 1, a, b);
} else {
printf("%lld\n", SGT::query(1, 1, tot - 1, l, r - 1));
}
}
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}

浙公网安备 33010602011771号