AtCoder Grand Contest 012 D Colorful Balls
不错的题。bx Ender32k。
我们发现交换有传递性,那么我们能交换就连边,答案是 \(\prod \frac{(sz)!}{\prod c_i!}\),其中 \(sz\) 为连通块大小,\(c_i\) 为这个连通块中第 \(i\) 种颜色出现次数。于是我们得到了一个 \(O(n^2)\) 的做法。
发现很多遍是无用的,考虑舍弃无用边。对于第一种连边,我们只与这种颜色的最小值的点连边;对于第二种连边,我们只与最小值最小和次小的点连边。然后就做完了。
code
// Problem: D - Colorful Balls
// Contest: AtCoder - AtCoder Grand Contest 012
// URL: https://atcoder.jp/contests/agc012/tasks/agc012_d
// Memory Limit: 256 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<int, int> pii;
const int maxn = 200100;
const int N = 200000;
const ll mod = 1000000007;
const int inf = 0x3f3f3f3f;
inline ll qpow(ll b, ll p) {
ll res = 1;
while (p) {
if (p & 1) {
res = res * b % mod;
}
b = b * b % mod;
p >>= 1;
}
return res;
}
int n, X, Y, a[maxn], b[maxn], p[maxn], stk[maxn], top, m, d[maxn];
pii c[maxn];
ll fac[maxn], ifac[maxn], ans = 1;
bool vis[maxn];
vector<int> G[maxn];
inline ll C(ll n, ll m) {
if (n < m || n < 0 || m < 0) {
return 0;
} else {
return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
}
}
inline void init() {
fac[0] = 1;
for (int i = 1; i <= N; ++i) {
fac[i] = fac[i - 1] * i % mod;
}
ifac[N] = qpow(fac[N], mod - 2);
for (int i = N - 1; ~i; --i) {
ifac[i] = ifac[i + 1] * (i + 1) % mod;
}
}
void dfs(int u) {
vis[u] = 1;
ans = ans * ifac[m] % mod * fac[d[a[u]]] % mod;
++d[a[u]];
++m;
ans = ans * fac[m] % mod * ifac[d[a[u]]] % mod;
stk[++top] = a[u];
for (int v : G[u]) {
if (!vis[v]) {
dfs(v);
}
}
}
void solve() {
scanf("%d%d%d", &n, &X, &Y);
for (int i = 1; i <= n; ++i) {
c[i] = make_pair(inf, -1);
p[i] = i;
}
for (int i = 1; i <= n; ++i) {
scanf("%d%d", &a[i], &b[i]);
c[a[i]] = min(c[a[i]], make_pair(b[i], i));
}
sort(p + 1, p + n + 1, [&](int x, int y) {
return c[x] < c[y];
});
for (int i = 1; i <= n; ++i) {
if (c[a[i]].fst + b[i] > X || c[a[i]].scd == i) {
continue;
}
G[i].pb(c[a[i]].scd);
G[c[a[i]].scd].pb(i);
}
if (n > 1 && c[p[2]].scd != -1) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= 2; ++j) {
if (a[c[p[j]].scd] != a[i] && b[c[p[j]].scd] + b[i] <= Y) {
G[i].pb(c[p[j]].scd);
G[c[p[j]].scd].pb(i);
}
}
}
}
for (int i = 1; i <= n; ++i) {
if (vis[i]) {
continue;
}
m = 0;
dfs(i);
while (top) {
int x = stk[top--];
d[x] = 0;
}
}
printf("%lld\n", ans);
}
int main() {
init();
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}

浙公网安备 33010602011771号