AtCoder Regular Contest 154 E Reverse and Inversion
好题!
考虑如何更简洁地描述 \(\sum\limits_{i = 1}^n \sum\limits_{j = i + 1}^n [P_i > P_j] (j - i)\)。拆贡献,设 \(f_i = \sum\limits_{j = 1}^{i - 1} [P_j > P_i] - \sum\limits_{j = i + 1}^n [P_j < P_i]\),所求即为 \(\sum\limits_{i = 1}^n i \times f_i\)。注意到交换 \(i, i + 1\),\(f_i\) 无论如何都增加 \(1\),\(f_{i + 1}\) 无论如何都减少 \(1\)。并且 \(f_1 = 1 - P_1\)。可得 \(f_i = i - P_i\)。因此所求即为 \(\sum\limits_{i = 1}^n i \times (i - P_i) = \sum\limits_{i = 1}^n i^2 - \sum\limits_{i = 1}^n i \times P_i\)。
设 \(Q_{P_i} = i\),后面项可转化成 \(\sum\limits_{i = 1}^n i \times Q_i\)。不妨计数转期望,计算 \(\sum\limits_{i = 1}^n i \times E(Q_i)\)。注意到,如果 \(Q_i\) 至少被操作 \(1\) 次,那么最后到达 \(j\) 和 \(n - j + 1\) 的概率是相等的。因为位置 \(i\) 被换到位置 \(j\) 的方案数是 \(\min(\min(i, j), n - \max(i, j) + 1) = \min\{i, j, n - i + 1, n - j + 1\}\)。所以如果 \(Q_i\) 至少被操作了 \(1\) 次,\(Q_i\) 的期望是 \(\frac{n + 1}{2}\)。
剩下的部分是平凡的。算出 \(m\) 次操作均不包含 \(Q_i\) 的概率即可。
时间复杂度 \(O(n \log m)\),瓶颈在快速幂。
code
// Problem: E - Reverse and Inversion
// Contest: AtCoder - AtCoder Regular Contest 154
// URL: https://atcoder.jp/contests/arc154/tasks/arc154_e
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 200100;
const ll mod = 998244353;
const ll inv2 = (mod + 1) / 2;
inline ll qpow(ll b, ll p) {
ll res = 1;
while (p) {
if (p & 1) {
res = res * b % mod;
}
b = b * b % mod;
p >>= 1;
}
return res;
}
ll n, m, a[maxn];
void solve() {
scanf("%lld%lld", &n, &m);
ll ans = 0;
for (int i = 1, x; i <= n; ++i) {
scanf("%d", &x);
a[x] = i;
ans = (ans + 1LL * i * i % mod) % mod;
}
for (int i = 1; i <= n; ++i) {
ll p = ((n - a[i]) * (n - a[i] + 1) / 2 + (a[i] - 1) * a[i] / 2) % mod * qpow(n * (n + 1) / 2 % mod, mod - 2) % mod;
ans = (ans - (qpow(p, m) * a[i] % mod + (1 - qpow(p, m) + mod) % mod * (n + 1) % mod * inv2 % mod) % mod * i % mod + mod) % mod;
}
ans = ans * qpow(n * (n + 1) / 2 % mod, m) % mod;
printf("%lld\n", ans);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}

浙公网安备 33010602011771号