AtCoder Regular Contest 098 F Donation
非常妙的 Kruskal 重构树。
倒序考虑,相当于每次经过一个点必须至少有 \(\max(0, a_u - b_u)\) 元,然后获得 \(b_u\) 元,并且之后经过这个点都不会再获得钱。令 \(c_i = \max(0, a_u - b_u)\),考虑枚举终点 \(u\),并且按 \(c\) 从小到大走,这样我们得到了一个 \(O(n^2)\) 的做法。
考虑建出 Kruskal 重构树,边 \((u,v)\) 权为 \(\max(c_u, c_v)\)。那么每次从叶结点开始跳祖先,由于点权随着深度递减而递增,所以到达一个祖先 \(w\),最优方案一定是把 \(w\) 子树内所有结点走完再往上走。设 \(g_u = \sum\limits_{v \in subtree(u)} b_v\),一开始有 \(x\) 元,则 \(w\) 跳到 \(fa_w\) 需要满足 \(g_w + x \ge c_{fa_w}\)。那么每个终点 \(u\) 的最小钱数 \(x\) 就是所有祖先的 \(c_{fa_w} - g_w\) 的最大值,dfs 求解即可。最终答案还要加上 \(\sum b_u\)。
时间复杂度 \(O(m \log m)\)。
code
/*
p_b_p_b txdy
AThousandSuns txdy
Wu_Ren txdy
Appleblue17 txdy
*/
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 1000100;
const ll inf = 0x3f3f3f3f3f3f3f3fLL;
ll n, m, a[maxn], b[maxn], c[maxn], ans = inf;
int fa[maxn], ntot, head[maxn], len;
struct E {
ll u, v, d;
} G[maxn];
bool cmp(E a, E b) {
return a.d < b.d;
}
struct edge {
int to, next;
} edges[maxn];
void add_edge(int u, int v) {
edges[++len].to = v;
edges[len].next = head[u];
head[u] = len;
}
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
void dfs(int u) {
if (u <= n) {
return;
}
for (int i = head[u]; i; i = edges[i].next) {
int v = edges[i].to;
dfs(v);
b[u] += b[v];
}
}
void dfs2(int u, ll val) {
if (u <= n) {
ans = min(ans, max(c[u], val));
return;
}
for (int i = head[u]; i; i = edges[i].next) {
int v = edges[i].to;
dfs2(v, max(val, c[u] - b[v]));
}
}
void solve() {
scanf("%lld%lld", &n, &m);
ntot = n;
ll s = 0;
for (int i = 1; i <= n; ++i) {
scanf("%lld%lld", &a[i], &b[i]);
c[i] = max(0LL, a[i] - b[i]);
s += b[i];
}
for (int i = 1; i <= m; ++i) {
scanf("%lld%lld", &G[i].u, &G[i].v);
G[i].d = max(c[G[i].u], c[G[i].v]);
}
sort(G + 1, G + m + 1, cmp);
for (int i = 1; i <= n * 2; ++i) {
fa[i] = i;
}
for (int i = 1; i <= m; ++i) {
int x = find(G[i].u), y = find(G[i].v);
if (x != y) {
int z = ++ntot;
fa[x] = fa[y] = z;
add_edge(z, x);
add_edge(z, y);
c[z] = G[i].d;
}
}
dfs(ntot);
dfs2(ntot, 0);
printf("%lld\n", ans + s);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}

浙公网安备 33010602011771号