AtCoder Regular Contest 098 F Donation

洛谷传送门

AtCoder 传送门

非常妙的 Kruskal 重构树。

倒序考虑,相当于每次经过一个点必须至少有 \(\max(0, a_u - b_u)\) 元,然后获得 \(b_u\) 元,并且之后经过这个点都不会再获得钱。令 \(c_i = \max(0, a_u - b_u)\),考虑枚举终点 \(u\),并且按 \(c\) 从小到大走,这样我们得到了一个 \(O(n^2)\) 的做法。

考虑建出 Kruskal 重构树,边 \((u,v)\) 权为 \(\max(c_u, c_v)\)。那么每次从叶结点开始跳祖先,由于点权随着深度递减而递增,所以到达一个祖先 \(w\),最优方案一定是把 \(w\) 子树内所有结点走完再往上走。设 \(g_u = \sum\limits_{v \in subtree(u)} b_v\),一开始有 \(x\) 元,则 \(w\) 跳到 \(fa_w\) 需要满足 \(g_w + x \ge c_{fa_w}\)。那么每个终点 \(u\) 的最小钱数 \(x\) 就是所有祖先的 \(c_{fa_w} - g_w\) 的最大值,dfs 求解即可。最终答案还要加上 \(\sum b_u\)

时间复杂度 \(O(m \log m)\)

code
/*

p_b_p_b txdy
AThousandSuns txdy
Wu_Ren txdy
Appleblue17 txdy

*/

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;

const int maxn = 1000100;
const ll inf = 0x3f3f3f3f3f3f3f3fLL;

ll n, m, a[maxn], b[maxn], c[maxn], ans = inf;
int fa[maxn], ntot, head[maxn], len;

struct E {
	ll u, v, d;
} G[maxn];

bool cmp(E a, E b) {
	return a.d < b.d;
}

struct edge {
	int to, next;
} edges[maxn];

void add_edge(int u, int v) {
	edges[++len].to = v;
	edges[len].next = head[u];
	head[u] = len;
}

int find(int x) {
	return fa[x] == x ? x : fa[x] = find(fa[x]);
}

void dfs(int u) {
	if (u <= n) {
		return;
	}
	for (int i = head[u]; i; i = edges[i].next) {
		int v = edges[i].to;
		dfs(v);
		b[u] += b[v];
	}
}

void dfs2(int u, ll val) {
	if (u <= n) {
		ans = min(ans, max(c[u], val));
		return;
	}
	for (int i = head[u]; i; i = edges[i].next) {
		int v = edges[i].to;
		dfs2(v, max(val, c[u] - b[v]));
	}
}

void solve() {
	scanf("%lld%lld", &n, &m);
	ntot = n;
	ll s = 0;
	for (int i = 1; i <= n; ++i) {
		scanf("%lld%lld", &a[i], &b[i]);
		c[i] = max(0LL, a[i] - b[i]);
		s += b[i];
	}
	for (int i = 1; i <= m; ++i) {
		scanf("%lld%lld", &G[i].u, &G[i].v);
		G[i].d = max(c[G[i].u], c[G[i].v]);
	}
	sort(G + 1, G + m + 1, cmp);
	for (int i = 1; i <= n * 2; ++i) {
		fa[i] = i;
	}
	for (int i = 1; i <= m; ++i) {
		int x = find(G[i].u), y = find(G[i].v);
		if (x != y) {
			int z = ++ntot;
			fa[x] = fa[y] = z;
			add_edge(z, x);
			add_edge(z, y);
			c[z] = G[i].d;
		}
	}
	dfs(ntot);
	dfs2(ntot, 0);
	printf("%lld\n", ans + s);
}

int main() {
	int T = 1;
	// scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}

posted @ 2023-01-16 10:06  zltzlt  阅读(33)  评论(0)    收藏  举报