洛谷 P2973 [USACO10HOL]Driving Out the Piggies G
思路
设 \(f_i\) 为经过第 \(i\) 个结点的期望次数,那么炸弹在第 \(i\) 个结点爆炸的概率即为 \(f_i \times \dfrac{P}{Q}\)。
有转移:
\[f_u = [u=1] + \sum\limits_{(u,v) \in E} \dfrac{1 - \frac{P}{Q}}{deg_v} \times f_v
\]
其中 \(\dfrac{1 - \frac{P}{Q}}{deg_v}\) 表示从 \(v\) 的炸弹等概率选择一条出边运送且不引爆的概率。
高斯消元即可。时间复杂度 \(O(nm + n^3)\)。
代码
code
/*
p_b_p_b txdy
AThousandSuns txdy
Wu_Ren txdy
Appleblue17 txdy
*/
#include <bits/stdc++.h>
#define pb push_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 310;
const int maxm = 90000;
int n, m, p, q, head[maxn], len, deg[maxn];
ldb a[maxn][maxn];
struct edge {
int to, next;
} edges[maxm];
void add_edge(int u, int v) {
edges[++len].to = v;
edges[len].next = head[u];
head[u] = len;
}
void gauss() {
for (int i = 1; i <= n; ++i) {
int r = i;
for (int j = i + 1; j <= n; ++j) {
if (fabs(a[j][i]) > fabs(a[r][i])) {
r = j;
}
}
for (int j = i; j <= n + 1; ++j) {
swap(a[i][j], a[r][j]);
}
for (int j = i + 1; j <= n + 1; ++j) {
a[i][j] /= a[i][i];
}
a[i][i] = 1;
for (int j = 1; j <= n; ++j) {
if (i == j) {
continue;
}
for (int k = i + 1; k <= n + 1; ++k) {
a[j][k] -= a[j][i] * a[i][k];
}
a[j][i] = 0;
}
}
}
void solve() {
scanf("%d%d%d%d", &n, &m, &p, &q);
while (m--) {
int u, v;
scanf("%d%d", &u, &v);
add_edge(u, v);
add_edge(v, u);
++deg[u];
++deg[v];
}
ldb prob = (ldb)p / q;
a[1][n + 1] = 1;
for (int u = 1; u <= n; ++u) {
a[u][u] = 1;
for (int i = head[u]; i; i = edges[i].next) {
int v = edges[i].to;
a[u][v] -= (1 - prob) / deg[v];
}
}
gauss();
for (int i = 1; i <= n; ++i) {
printf("%.10Lf\n", a[i][n + 1] * prob);
}
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}

浙公网安备 33010602011771号