NCNN优化实时面部关键点检测

效果图

avatar

演示手机为红米10X pro,可以实时跑人脸检测+关键点识别二个模型.

主要优化

上次看见有人讨论人脸检测与关键点识别,用的是opencv相关,于是想看下深度神经网络相关部分的进展,先选定了推理框架ncnn,支持window/android等多种平台,然后在github参照多个ncnn+人脸检测/关键点识别的项目,大部分都是ncnn前期处理图像大小与改成rgb三平面格式,然后经过ncnn处理后再经opencv画矩形与多点.

在本机PC平台下,先用相关的人脸检测demo测试了下,Release下ncnn前期图像处理时间就需要ncnn(vulkan版本)推理时间的一半,有点奇怪,明明分辨率才那么点,不知是否更有效CPU前期图像处理方式,我能想到就是改为GPU处理,于是就有了本次优化,主要是把ncnn前期图像处理与opencv后期画矩形与多点全改成vulkan的computeshader处理,整个过程理想情况下全在GPU下处理,只有中间CPU-GPU传输数据占用大头,顺便去掉相关opencv的所有调用.

ncnn前期图像处理

首先ncnn前期图像处理主要就是三步,一是缩放,二是把数据交叉格式变成平面格式,三是数据的归一化,其相关过程改为如下vulkan的computeshader.

#version 450

layout (local_size_x = 16, local_size_y = 16) in;
layout (binding = 0) uniform sampler2D inSampler;
layout (binding = 1) buffer outBuffer{
    float dataOut[];
};

layout (std140, binding = 2) uniform UBO {    
    int outWidth;
    int outHeight;
    float meanX;
    float meanY;
    float meanZ;
    float meanW;
    float scaleX;
    float scaleY;
    float scaleZ;
    float scaleW;
} ubo;

void main(){
    ivec2 uv = ivec2(gl_GlobalInvocationID.xy);    
    if(uv.x >= ubo.outWidth || uv.y >= ubo.outHeight){
        return;
    }      
    vec2 suv = (vec2(uv)+vec2(0.5f))/vec2(ubo.outWidth,ubo.outHeight);  
    vec4 inColor = textureLod(inSampler,suv,0)*255.0f;  
    int size = ubo.outWidth*ubo.outHeight;
    int index = uv.y*ubo.outWidth+uv.x;
    vec4 mean = vec4(ubo.meanX,ubo.meanY,ubo.meanZ,ubo.meanW);
    vec4 scale = vec4(ubo.scaleX,ubo.scaleY,ubo.scaleZ,ubo.scaleW);
    inColor = (inColor-mean)*scale;
#if NCNN_BGR    
    dataOut[index] = inColor.b;
    dataOut[index+size] = inColor.g;
    dataOut[index+2*size] = inColor.r;
#endif
#if NCNN_RGB
    dataOut[index] = inColor.r;
    dataOut[index+size] = inColor.g;
    dataOut[index+2*size] = inColor.b;
#endif
}

关键点模型的识别需要在面部识别的RECT区域上进行识别,相关代码修改为.

#version 450

layout (local_size_x = 16, local_size_y = 16) in;
layout (binding = 0) uniform sampler2D inSampler;
layout (binding = 1) buffer outBuffer{
    float dataOut[];
};

layout (std140, binding = 2) uniform UBO {    
    int outWidth;
    int outHeight;
    float meanX;
    float meanY;
    float meanZ;
    float meanW;
    float scaleX;
    float scaleY;
    float scaleZ;
    float scaleW;
    float x1;
    float x2;
    float y1;
    float y2;
} ubo;

void main(){
    ivec2 uv = ivec2(gl_GlobalInvocationID.xy);    
    if(uv.x >= ubo.outWidth || uv.y >= ubo.outHeight){
        return;
    }      
    vec2 isize = vec2(ubo.x2-ubo.x1,ubo.y2-ubo.y1);
    vec2 suv = (vec2(uv)+vec2(0.5f))/vec2(ubo.outWidth,ubo.outHeight); 
    vec2 isuv = suv*isize+vec2(ubo.x1,ubo.y1); 
    vec4 inColor = textureLod(inSampler,isuv,0)*255.0f;  
    int size = ubo.outWidth*ubo.outHeight;
    int index = uv.y*ubo.outWidth+uv.x;
    vec4 mean = vec4(ubo.meanX,ubo.meanY,ubo.meanZ,ubo.meanW);
    vec4 scale = vec4(ubo.scaleX,ubo.scaleY,ubo.scaleZ,ubo.scaleW);
    inColor = (inColor-mean)*scale;
#if NCNN_BGR    
    dataOut[index] = inColor.b;
    dataOut[index+size] = inColor.g;
    dataOut[index+2*size] = inColor.r;
#endif
#if NCNN_RGB
    dataOut[index] = inColor.r;
    dataOut[index+size] = inColor.g;
    dataOut[index+2*size] = inColor.b;
#endif
}

opencv矩形与多点绘制

画矩形与多点,我在移植GPUImage里相关滤镜时考虑过这个,当时想的是把渲染管线这一套集成就容易了,但是渲染管线本身,以及和计算管线的通用交互设计又是很多东东.

暂时决定先简单点来,画矩形,这种写法算力肯定有点浪费.

#version 450

layout (local_size_x = 16, local_size_y = 16) in;// gl_WorkGroupSize

layout (binding = 0, rgba8) uniform readonly image2D inTex;
layout (binding = 1, rgba8) uniform image2D outTex;

layout (binding = 2) uniform UBO {
	int radius; 
    float x1;
    float x2;
    float y1;
    float y2;  
    float colorR;	
    float colorG;
    float colorB;
    float colorA; 
} ubo;

void main(){    
    ivec2 uv = ivec2(gl_GlobalInvocationID.xy);
    ivec2 size = imageSize(inTex);
    if(uv.x >= size.x || uv.y >= size.y){
        return;
    } 

    int xmin = int(ubo.x1 * size.x);
    int xmax = int(ubo.x2 * size.x); 
    int ymin = int(ubo.y1 * size.y);
    int ymax = int(ubo.y2 * size.y);

    ivec4 xx = ivec4(uv.x, xmax, uv.y, ymax);
    ivec4 yy = ivec4(xmin, uv.x, ymin, uv.y);

    ivec4 xy = abs(xx - yy);
    float sum =  step(xy.x, ubo.radius) + step(xy.y, ubo.radius) + step(xy.z, ubo.radius) + step(xy.w, ubo.radius);
	vec2 lr = vec2(xy.x + xy.y, xy.z + xy.w);
	vec2 rl = vec2(xmax - xmin, ymax - ymin);
    vec4 color = imageLoad(inTex,uv);  
	if (sum > 0 && length(lr - rl) < ubo.radius) {
		vec3 drawColor = vec3(ubo.colorR,ubo.colorG,ubo.colorB);
        color.rgb = color.rgb*(1.0f - ubo.colorA) + drawColor*ubo.colorA;
	}
    imageStore(outTex,uv,color);
}

画多点也是有渲染管线就很容易实现,在这还好,固定多点,简单来说,针对多个UV,在图上对应UV标记,然后和原图混合.

#version 450

layout (local_size_x = 240, local_size_y = 1) in;

layout (binding = 0) buffer inBuffer{
    vec2 points[];
};
layout (binding = 1, rgba8) uniform image2D outTex;

layout (binding = 2) uniform UBO {
	int showCount;
    int radius;
    float colorR;	
    float colorG;
    float colorB;
    float colorA;  
} ubo;

void main(){   
    int index = int(gl_GlobalInvocationID.x);    
    ivec2 size = imageSize(outTex);   
    if(index >= ubo.showCount){
        return;
    }
    ivec2 uv = ivec2(points[index] * size);
    vec4 drawColor = vec4(ubo.colorR,ubo.colorG,ubo.colorB,ubo.colorA);
    int radius = max(1,ubo.radius);
    for(int i = 0; i< radius; ++i){
        for(int j= 0; j< radius; ++j){
            int x = uv.x - 1 + j;
            int y = uv.y - 1 + i;
            // REPLICATE border
            x = max(0,min(x,size.x-1));
            y = max(0,min(y,size.y-1));
            imageStore(outTex, ivec2(x,y), drawColor);
        } 
    }    
}

有大佬有更好的想法欢迎指点.

编译与运行

如上glsl逻辑封装与组合逻辑主要代码在aoce_ncnn,win端测试demo主要在ncnntest,其目录下CMakeLists.txt提供选项NCNN_VULKAN_WINDOW,决定是用vulkan绘制还是opencv绘制.android端demo主要封装逻辑在aocencnntest.

大家可以自己下载相关ncnn编译,调试,测试其中的细节,也可以直接使用我配置好的目录aoce_thirdparty,把下载的thirdparty文件夹下文件放入aoce目录下thirdparty文件夹下,位置正确CMake会自动查找链接相关dll.

在android下,需要先用swig自动把aoce提供的接口转化成java,详细请看android build,现在需要把手机横着检测才有比较好的效果,这个后期应该会调整.

最后是比较遗憾的地方,原计划是把vulkan前期处理完的buffer直接和ncnn进行显存交互对接,不像现在用的VK_MEMORY_PROPERTY_HOST_COHERENT_BIT类型的buffer做中转,其中测试一些写法,暂时都没成功,有做过类似的大佬欢迎指点.

参照:

FaceDetect-FaceLandmark

pfld-ncnn

pfld-ncnn

PFLD-pytorch

Face-Detector-1MB-with-landmark

Ultra-Light-Fast-Generic-Face-Detector-1MB

QT+ncnn实现人脸检测及关键点

人脸检测之Ultra-Light-Fast-Generic-Face-Detector-1MB

人脸检测--MTCNN从头到尾的详解

posted @ 2021-09-06 16:19  天天不在  阅读(771)  评论(0编辑  收藏  举报