2016年11月2日
摘要: 对于函数f(x)=λsin(πx),λ∈(0,1],使用matlab计算随着λ逐渐增大,迭代x=f(x)的值,代码如下: function y=diedai(f,a,x1) N=32; y=zeros(N,1); for i=1:1e4 x2=f(a,x1); x1=x2; y(mod(i,N)+1 阅读全文
posted @ 2016-11-02 09:17 Minstrel 阅读(3950) 评论(0) 推荐(0)
  2016年11月1日
摘要: JSON数据 JSON数据已经成为通过HTTP请求在Web浏览器和其他应用程序之间发送数据的标准格式之一。除其空值null和一些其他的细微差别,JSON非常接近有效的Python代码。基本类型有对象(字典),数组(列表),字符串,数值,布尔值以及null。对象中所有键必须是字符串。通过json库,j 阅读全文
posted @ 2016-11-01 19:11 Minstrel 阅读(127) 评论(0) 推荐(0)
摘要: pandas 逐块读取文本文件 在pd.read_csv()函数中指定 nrows 值,可指定读取行数。 如图是ex6.csv在excel中打开,使用read_csv,将值计数聚合到‘key’中,代码如下: chunker = pd.read_csv('E:\pydata-book-master\c 阅读全文
posted @ 2016-11-01 18:50 Minstrel 阅读(212) 评论(0) 推荐(0)
  2016年10月31日
摘要: # -*- coding: utf-8 -*-"""Created on Mon Oct 31 13:48:19 2016 @author: QING""" import numpy as npimport scipy as spfrom scipy.optimize import leastsq 阅读全文
posted @ 2016-10-31 14:58 Minstrel 阅读(1382) 评论(0) 推荐(0)
  2016年10月26日
摘要: 首先导入产生的数据 pd_data = pd.read_csv('data.csv').ix[:,['x','y']] 方法一 使用 sklearn.linear_model.Perceptron函数 代码如下: # -*- coding: utf-8 -*-"""Created on Tue Oc 阅读全文
posted @ 2016-10-26 13:38 Minstrel 阅读(157) 评论(0) 推荐(0)
  2016年10月25日
摘要: 利用python产生数据,数据分布如图 产生数据并导出到文件‘data.csv’ import pandas as pdimport numpy as npfrom pandas import DataFrame,Seriesimport mathimport matplotlib.pyplot a 阅读全文
posted @ 2016-10-25 21:29 Minstrel 阅读(192) 评论(0) 推荐(0)
摘要: pandas中的解析函数 read_csv() read_table() read_fwf()读取定宽列格式数据,没有分隔符。 read_clipboard()读取剪切板中数据 这些函数选项可以划分为以下几个大类: 索引,类型推断和数据转换,日期解析,迭代,不规整数据问题。 可以指定列名,也可以将指 阅读全文
posted @ 2016-10-25 13:45 Minstrel 阅读(304) 评论(0) 推荐(0)
摘要: 整数索引 如果需要可靠的,不考虑索引类型,基于位置的索引可以使用Series的iget_value方法和DataFrame的irow,icol方法 ser = Series(range(3),index=[2,-4,4]) serOut[57]: 2 0-4 1 4 2dtype: int64 se 阅读全文
posted @ 2016-10-25 09:41 Minstrel 阅读(92) 评论(0) 推荐(0)
摘要: 使用dataframe的列当做索引 frame = DataFrame({'a':range(7),'b':range(7,0,-1),'c':['one','one','one','two','two','two','two'],'d':[0,1,2,0,1,2,3]}) frame.set_in 阅读全文
posted @ 2016-10-25 09:33 Minstrel 阅读(108) 评论(0) 推荐(0)
摘要: pandas层次化索引,在轴上拥有多个级别索引。 MultiIndex(Hierarchical indexing) import pandas as pd from pandas import Series,DataFrame import numpy as np data = Series(np 阅读全文
posted @ 2016-10-25 09:25 Minstrel 阅读(163) 评论(0) 推荐(0)