摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程. 1. 有两种书, 甲种每册 $1.9$ 元, 乙种每册 $2.8$ 元. 问 $50$ 元钱恰好可买甲, 乙两种书各几册? 解答: 设可买甲 $x$ 册, 乙 $y$ 册. $$1.9x + 2.8y = 50$$
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程. 1. 一轮船从重庆到上海要 $5$ 昼夜, 从上海到重庆要 $7$ 昼夜, 那么有一个木排从重庆漂到上海要多少昼夜? 解答: 设水流速度为 $x$, 则 $$x = \left(\frac{1}{5} - \fra
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 一水池用甲管注水, 可以在3小时内使空池注满; 用乙管放水, 可以在2小时内使满池水放空; 用丙管放水, 可以在4小时内使满池水放空. 现在先在空池时开甲管1小时, 然后三管齐开, 问什
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 一个两位数的数字和等于7, 如果每个数字加上2, 那么得到的数比原数的二倍小3, 求这个数. 解答: 设十位数字是 $x$, 则个位数字是 $7 - x$. 由题意有 $$2(10x +
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 化简: $${1\over a-x} - {1\over a+x} - {2x \over a^2 + x^2} - {4x^3 \over a^4 + x^4} - {8x^7 \ov
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 若 $\displaystyle{1\over n} - {1\over m} - {1\over n+m} = 0$, 则 $\displaystyle\left({m\over n}
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 若 $a^2 + 2a + 5$ 是 $a^4 + ma^2 + n$ 的一个因式, 那么 $mn$ 的值是多少? 解答: 待定系数法求解. 令 $a^4 + ma^2 + n = (a
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 若 $3x^2 - x = 1$, 则 $6x^3 + 7x^2 - 5x + 2016$ 的值是多少? 解答: $$6x^3 + 7x^2 - 5x + 2016 = 2x(3x^2
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. $(x + y + z)^5 - x^5 - y^5 - z^5$ 解答: $f(x, y, z)$ 是五次齐次对称式. 验证 $$f(-y, y, z) = z^5 + y^5 - y
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 1. 分解因式 $a^3 - 4a^2 + a + 6$. 解答: 令 $f(a) = a^3 - 4a^2 + a + 6$, 其有理根可能为 $\pm1$, $\pm2$, $\pm3$,
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 用待定系数法分解因式(1-6题) 1. $x^2 + xy - 2y^2 + 2x + 7y - 3$ 解答: $$x^2 + xy - 2y^2 + 2x + 7y - 3 = (x + 2
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 分解下列因式: 1. $x^3 + 3xy + y^3 - 1$ 解答: $$x^3 + 3xy + y^3 - 1 = x^3 + 3xy(x + y) + y^3 - 1 - 3xy(x
阅读全文
摘要:扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元). 分解下列因式: 1. $(2x^2+5x)^2 - 2x^2 - 5x - 6$ 解答: $$(2x^2+5x)^2 - 2x^2 - 5x - 6 = (2x^2+5x)^2 - (2x^2
阅读全文
摘要:猿辅导(点击进入官网)初中数学竞赛基础特训营于2016年8月27-31日在网络上举行,五天课程总计上课人数超过3万人。授课内容包括四个专题:整数的基本性质、抽屉原理初步、方程与不等式及平面几何新讲初步。以下为本次特训营作业题解答。 1、$a, b$ 是任意自然数, 试证明: $30\ \big{|}
阅读全文