ZhangZhihui's Blog  

You are given two integer arrays nums1 and nums2 sorted in non-decreasing order and an integer k.

Define a pair (u, v) which consists of one element from the first array and one element from the second array.

Return the k pairs (u1, v1), (u2, v2), ..., (uk, vk) with the smallest sums.

 

Example 1:

Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
Output: [[1,2],[1,4],[1,6]]
Explanation: The first 3 pairs are returned from the sequence: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]

Example 2:

Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2
Output: [[1,1],[1,1]]
Explanation: The first 2 pairs are returned from the sequence: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]

 

Constraints:

  • 1 <= nums1.length, nums2.length <= 105
  • -109 <= nums1[i], nums2[i] <= 109
  • nums1 and nums2 both are sorted in non-decreasing order.
  • 1 <= k <= 104
  • k <= nums1.length * nums2.length

 

ChatGPT's Solution:

import heapq


class Solution:
    def kSmallestPairs(self, nums1: List[int], nums2: List[int], k: int) -> List[List[int]]:
        if not nums1 or not nums2:
            return []
        
        min_heap = []
        result = []

        # Initialize the heap with the first element of nums2 paired with tup to k elements of nums1
        for i in range(min(k, len(nums1))):
            heapq.heappush(min_heap, (nums1[i] + nums2[0], i, 0))
        
        while min_heap and len(result) < k:
            sum_val, i, j = heapq.heappop(min_heap)
            result.append((nums1[i], nums2[j]))

            # If there is a next element in nums2, push the next pair (i, j+1) into the heap
            if j + 1 < len(nums2):
                heapq.heappush(min_heap, (nums1[i] + nums2[j+1], i, j+1))
        
        return result

 

 

Explanation:

  1. We use a min-heap to efficiently get the smallest sums.

  2. We initialize the heap with the first element of nums2 paired with up to k elements of nums1.

  3. We extract the smallest pair, then push the next potential pair by increasing the index in nums2.

  4. We repeat this until we collect k pairs or the heap is exhausted.

This approach ensures an efficient O(k log k) time complexity, making it suitable for large inputs.

 

posted on 2025-04-03 17:44  ZhangZhihuiAAA  阅读(19)  评论(0)    收藏  举报