Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]] Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1] Output: [] Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0] Output: [[0,0,0]] Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000-105 <= nums[i] <= 105
ChatGPT's Solution:
class Solution(object): def threeSum(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ nums.sort() # Sort the array to make it easier to find triplets and avoid duplicates n = len(nums) res = [] for i in range(n - 2): # Skip duplicate numbers for the first element if i > 0 and nums[i] == nums[i - 1]: continue left, right = i + 1, n - 1 # Two-pointer approach while left < right: total = nums[i] + nums[left] + nums[right] if total == 0: res.append([nums[i], nums[left], nums[right]]) # Skip duplicate numbers for the second and third elements while left < right and nums[left] == nums[left + 1]: left += 1 while left < right and nums[right] == nums[right - 1]: right -= 1 # Move pointers inward left += 1 right -= 1 elif total < 0: left += 1 # Increase sum by moving left pointer else: right -= 1 # Decrease sum by moving right pointer return res
Explanation:
- Sorting: Sorting the array allows us to efficiently find triplets while avoiding duplicates.
- Iterate over each element (
nums[i]) as a fixed starting number:- Skip duplicates to avoid repeated triplets.
- Use two pointers (
leftandright):- Move
leftandrightto find a sum of0. - Skip duplicate values to prevent duplicate triplets in the result.
- Move
- Time Complexity: O(n²) due to sorting (O(n log n)) and two-pointer traversal (O(n) per fixed
i).


浙公网安备 33010602011771号