随笔分类 - 其他数学问题—递推与生成函数
摘要:这类问题的基本模型是:你有$n$个小球,$m$个盒子,现在想把这$n$个小球放进$m$个盒子中,问有多少种放的方法 但是只给出这样的条件并不足够,我们必须加上一些限制,否则结果是不确定的 一般加的有三个限制,即小球是否有区别、盒子是否有区别、允不允许有空盒子,也因此可以组合出八种不同的问题 接下来我
阅读全文
摘要:首先我们考虑$n$的情况,显然以$n$为分界线可以将整个序列分成两部分,就像这样: 、 那么我们考虑:在这个东西前面才会有前缀最大的统计,在这个东西后面才会有后缀最大的统计 这样就剩下了$n-1$个元素,而我们需要把这$n-1$个元素分成$A+B-2$个集合,然后把每个集合的最大的一个放在一端,然后
阅读全文
摘要:首先我们考虑一个暴力的dp: 我们从小到大加入每个数,当我们加入第$i$个数时,可能产生的逆序对数量是$[0,i-1]$(这个证明考虑把第$i$个数放在哪即可),这样可以列出一个递推式: 设状态$dp[i][j]$表示已经加到了第$i$个数,此时的逆序对个数为$j$,那么有转移:$dp[i][j]=
阅读全文
摘要:生成函数好题 首先我们对每一种物品(设体积为$v_{i}$)构造生成函数$F(x)=\sum_{j=1}^{\infty}x^{jv_{i}}$ 那么很显然答案就是这一堆东西乘在一起 但是...这个复杂度是$O(nmlog_{2}m)$的,显然不合理 因此我们考虑优化 我们发现,如果我们把所有生成函
阅读全文
摘要:这一篇是一个专题总结,可能会写很久,希望不会咕掉 一.组合数学: ①.基本公式: 1.排列数公式$A_{n}^{m}=\frac{n!}{(n-m)!}$,表示从$n$个元素中选出$m$个元素并进行全排列的方案数 特别的,当$m=n$时,有$A_{n}^{n}=n!$(规定$0!=1$) 2.组合数
阅读全文
摘要:单位根反演好题 题意:求$\sum_{i=0}^{n}C_{n}^{i}S^{i}a_{ i mod 4 }$ 看到$i$ $mod$ $4$这种东西,很显然要分类讨论啦 于是变成了这种形式: $\sum_{d=0}^{3}a_{d}\sum_{i=0}^{n}[$ $i\equiv d$ $mod
阅读全文
摘要:首先我们需要找出一个朴素的递推来解决这个问题: 设状态$f(i)$表示权值和为$i$的二叉树的数量,$g(i)$表示权值$i$是否在集合中,即$g(i)=[i\in S]$ 枚举根节点和左子树的权值,立刻得到一个递推: $f(n)=\sum_{i=0}^{n}g(i)\sum_{j=0}^{n-i}
阅读全文
摘要:好毒瘤的一道题啊... 对每个$a_{i}\in S$,设$F(x)$为用$j$个$a_{i}$构造出$ja_{i}$的生成函数,那么$F(x)=\sum_{j=1}^{∞}x^{ja_{i}}$ 根据这篇博客里的内容,可以求得:$F(x)=\frac{1}{1-x^{a_{i}}}$ 设$t_{i
阅读全文
摘要:有两种推导方法: 第一种: 设状态$f(i)$表示有$i$个点的无向连通图个数,$g(i)$表示有$i$个点的无向图个数,那么显然$f(n)$即为我们所求,而$g(i)=2^{\frac{i(i-1)}{2}}$ 于是写出一个递推:枚举$1$号点所在的连通块,可得:$g(n)=\sum_{i=1}^
阅读全文
摘要:题意:求$\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)2^{j}j!$ 一看就觉得不可做... 但是还是需要仔细分析的 最重要的是一步转化: 根据第二类斯特林数的定义:$S(n,m)$表示将$n$个不同物品分到$m$个集合中的方案数 然后考虑求和式里面那个东西,发现其含义就是
阅读全文
摘要:生成函数在计算方案数以及计算递推公式时都有很大的作用,本文对生成函数的知识做一个初步的介绍(主要是博主自己不会) 一.基本定义: 给出序列{$a_{n}$}={$a_{0},a_{1},a_{2}...a_{n}$},构造一个函数(或者多项式)$F(x)=a_{0}+a_{1}x+a_{2}x^{2
阅读全文
摘要:一道生成函数例题 如果对生成函数的知识不太了解,看这里 下面认为你已经了解了生成函数的内容 那么看见这种问题直接上生成函数嘛! 直接构造...10个生成函数 福利时间:这10个生成函数如下: $F(x)=1+x^{6}+x^{12}+...=\frac{1}{1-x^{6}}$ $F(x)=1+x+
阅读全文
摘要:表示我这种蒟蒻面对这种递推第一思想显然是打表啊 先贴个用来打表的暴力: 实测这个打表程序是正确的(可以获得30分) 接下来是本人心路历程: 观察一下:1-1,2-5,3-16,4-45...找一下前后项吧! 观察前后项的倍数关系应该在2~3之间,那先定一个基础表达式 f[i]=2f[i-1]+...
阅读全文
摘要:看到全是矩阵的题解,我来一发递推+分治 其实这题一半和poj1845很像(或是1875?一个叫Sumdiv的题) 言归正传,我们看看怎么由f(0)推出f(n) 我们发现,题目中给出了f(n)=af(n-1)+c(取模略过) 那么顺着递推,可得:f(n-1)=af(n-2)+c 代入,得: f(n)=
阅读全文