poj-2955-Brackets-区间DP
poj-2955-Brackets-区间DP
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 9014 | Accepted: 4829 |
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
Source
一开始使用code2,找到总的pair数量再*2,以为就解决了。但是wrong answer,不知道本code的方法错在哪里?
使用了区间DP,方法参考自: http://www.cnblogs.com/kuangbin/archive/2013/04/29/3051402.html
| 2955 | Accepted | 472K | 47MS | G++ | 858B | 2017-09-16 11:12:08 |
#include <cstdio>
#include <cstring>
const int MAXN = 110;
#define max(a, b) (a)>(b)?(a):(b)
char ch[MAXN];
int dp[MAXN][MAXN];
int Solve(int l, int r){
if(dp[l][r] != -1){
return dp[l][r];
}
if(l>=r){
dp[l][r] = 0;
return 0;
}else if(r == l +1 ){
if((ch[l]=='(' && ch[r]==')') || (ch[l]=='[' && ch[r]==']') ){
dp[l][r] = 2;
}else{
dp[l][r] = 0;
}
return dp[l][r];
}
dp[l][r] = Solve(l+1, r);
for(int k=l+1; k<=r; ++k){
if((ch[l]=='(' && ch[k]==')') || (ch[l]=='[' && ch[k]==']') ){
dp[l][r] = max(dp[l][r], 2+Solve(l+1, k-1) + Solve(k+1, r));
}
}
return dp[l][r];
}
int main(){
freopen("in.txt", "r", stdin);
while(scanf("%s", ch) != EOF){
getchar();
if(strcmp(ch, "end") == 0){
break;
}
int len = strlen(ch);
memset(dp, -1, sizeof(dp));
int ans = Solve(0, len-1);
printf("%d\n", ans );
}
return 0;
}
采用count的方式来计算 subsequence,不知道wrong answer的地方是啥?
#include <cstdio>
#include <cstdlib>
#include <cstring>
const int MAXN = 12;
int main(){
freopen("in.txt", "r", stdin);
int ans, f1,f2, len;
char ch[MAXN];
while(scanf("%s", ch) != EOF){
getchar();
if(strcmp(ch, "end") == 0){
break;
}
len = strlen(ch);
ans = 0;
f1 = 0;
f2 = 0;
for(int i=0; i<len; ++i){
if(ch[i] == '('){
++f1;
}else if(ch[i] == '['){
++f2;
}else if(ch[i] == ')'){
if(f1 > 0){
++ans;
--f1;
}
}else if(ch[i] == ']'){
if(f2 > 0){
++ans;
--f2;
}
}
}
printf("%d\n", 2*ans );
}
return 0;
}

浙公网安备 33010602011771号