Hamilton Jacobi
- Hamilton Jacobi
使用的不同的 Flux 和不同的边界条件测试了
\[u_t=\frac{u_x^2}{1+u_x^2}-\frac{\cos(x)^2}{1+\cos(x)^2},x\in [0,4\pi]
\]
最有趣的是测试了初值
\[u=
\left\{
\begin{array}{c}
\sin(x),&x\in[0,\pi] \cup [3\pi,4\pi]\\
0,&x\in (\pi,3\pi)
\end{array}
\right.
\]
这说明这样的Hamilton-jacobi 严重依赖于初值的选取。
现在采取的策略是:将 hamilton -Jacobi 部分当作是已知部分,专注于原来的退化抛物方程。
function T77
N=500;
x=linspace(0,4*pi,N)';
h=x(2)-x(1);
N_BC=[cos(x(1:2)),cos(x(end-1:end))];
D_BC=[sin(x(1:2)-2*h),sin(x(end-1:end)+2*h)];
u_0=sin(x);
u=[u_0(1:100);cos(x(101:end-101)).*u_0(101:end-101);u_0(end-100:end)];
t=0;
dt=0.8*h;
t_end=50;
S=cos(x).^2./(1+cos(x).^2);
%============= Runge-Kutta =================
while t<t_end
u1=u+dt*L(u);
u2=3/4*u+1/4*u1+1/4*dt*L(u1);
u=1/3*u+2/3*u2+2/3*dt*L(u2);
t=t+dt;
subplot(1,2,1)
plot(x,u,'b.',x,sin(x),'r')
subplot(1,2,2)
plot(x,err(u),'.')
title(['t=',num2str(t)])
drawnow
end
function y=L(u)
dup=WENO5_1D(x,u,N_BC, 1,'N','no');
dum=WENO5_1D(x,u,N_BC, -1,'N','no');
%-------- 这是差分法 ------------
%dup=FD5_point(x,u,N_BC,-1,'N');
%dum=FD5_point(x,u,N_BC,1,'N');
%y=-Ham(dup,dum)+S;
y=-Lax_Fridrich(dup,dum)+S;
end
function y=Ham(fxp,fxm)
by=(min(fxp,0)).^2+(max(fxm,0)).^2;
y=by./(1+by);
end
function y=Lax_Fridrich(dup,dum)
du=(dup+dum)/2;
alpha=max((-2*power(du,3))./power(1 + power(du,2),2) + (2*du)./(1 + power(du,2)));
y=du.^2./(1+du.^2)-alpha*(dup-dum);
end
function y=err(u)
du=WENO5_1D(x,u,N_BC, 1,'N','smooth');
Rh=du.^2./(1+du.^2);
y=Rh-S;
end
end

浙公网安备 33010602011771号