基于核主成分分析和二维主成分分析的人脸识别MATLAB实现
基于核主成分分析(Kernel PCA)和二维主成分分析(2DPCA)的人脸识别MATLAB实现
一、matlab代码实现
1. 数据预处理模块
function [X_norm, mean_face] = preprocess_data(imds)
% 图像向量化与归一化
X = double(reshape(imds.Files{1}, [], 1));
for i = 2:numel(imds.Files)
X = [X; double(reshape(imds.Files{i}, [], 1))];
end
% 零均值化
mean_face = mean(X, 1);
X_norm = X - repmat(mean_face, size(X,1), 1);
% 数据划分
cv = cvpartition(size(X,1),'HoldOut',0.3);
X_train = X_norm(cv.training,:);
X_test = X_norm(cv.test,:);
end
2. 核PCA实现(高斯核)
function [K_pca, alpha] = kernel_pca(X, kernel_type, param)
% 计算核矩阵
n = size(X,1);
K = zeros(n,n);
for i = 1:n
for j = 1:n
switch kernel_type
case 'rbf'
K(i,j) = exp(-norm(X(i,:)-X(j,:))^2 / (2*param^2));
case 'poly'
K(i,j) = (X(i,:) * X(j,:) + 1).^param;
end
end
end
% 中心化核矩阵
one_n = ones(n)/n;
K_center = K - one_n*K - K*one_n + one_n*K*one_n;
% 特征分解
[alpha, ~] = eig(K_center);
[~, idx] = sort(diag(alpha),'descend');
alpha = alpha(:,idx);
end
3. 二维PCA实现
function [coeff, score] = two_d_pca(X)
% 图像矩阵分解
[rows, cols, num_samples] = size(X);
X_reshaped = double(reshape(X, rows*cols, num_samples));
% 计算协方差矩阵
cov_mat = (X_reshaped * X_reshaped') / (num_samples - 1);
% 特征分解
[V, D] = eig(cov_mat);
[~, idx] = sort(diag(D),'descend');
V = V(:,idx);
% 特征投影
coeff = V(:,1:2); % 取前两个主成分
score = X_reshaped * coeff;
end
4. 完整识别流程
%% 主程序
clear; clc; close all;
% 加载ORL数据集
dataPath = 'orl_faces/';
[imds, labels] = loadORLData(dataPath);
% 数据预处理
[X_norm, mean_face] = preprocess_data(imds);
% KPCA降维(参数:高斯核gamma=0.05)
K_pca = kernel_pca(X_norm, 'rbf', 0.05);
K_pca_train = K_pca(cv.training,:);
K_pca_test = K_pca(cv.test,:);
% 2DPCA特征提取
coeff = two_d_pca(reshape(imds.Files{1},112,92));
train_feat = K_pca_train * coeff;
test_feat = K_pca_test * coeff;
% SVM分类
template = templateSVM('KernelFunction','rbf','Standardize',true);
model = fitcecoc(train_feat, labels(cv.training));
predicted = predict(model, test_feat);
% 性能评估
accuracy = sum(predicted == labels(cv.test)) / numel(labels(cv.test));
fprintf('识别准确率: %.2f%%
', accuracy*100);
二、关键技术解析
1. 核函数选择对比
| 核函数类型 | 参数范围 | 适用场景 | 优势 |
|---|---|---|---|
| RBF核 | γ∈(0,100) | 非线性可分数据 | 强非线性映射能力 |
| 多项式核 | d∈(1,10) | 结构化数据 | 保留数据局部结构 |
| 线性核 | 无参数 | 线性可分数据 | 计算效率高 |
2. 2DPCA优化策略
% 加权2DPCA(空间注意力机制)
function [coeff] = weighted_2d_pca(X, weight_matrix)
[rows, cols, num_samples] = size(X);
X_weighted = X .* repmat(weight_matrix, [1,1,num_samples]);
cov_mat = (X_weighted * X_weighted') / (num_samples - 1);
[V, ~] = eig(cov_mat);
[~, idx] = sort(diag(V),'descend');
coeff = V(:,idx(1:2));
end
三、工程优化方案
1. GPU加速实现
% 使用gpuArray加速
X_gpu = gpuArray(X_norm);
K_pca_gpu = kernel_pca(X_gpu, 'rbf', 0.05);
test_feat_gpu = K_pca_gpu * coeff;
2. 分块处理策略
% 图像分块处理(256x256→64x64块)
block_size = 64;
num_blocks = (112/block_size)^2;
features = zeros(size(X,1), num_blocks);
for i = 1:block_size:112
for j = 1:block_size:92
block = X(:,(i-1)*block_size+1:i*block_size, (j-1)*block_size+1:j*block_size);
features(:,((i-1)/block_size)*block_size + (j-1)/block_size +1) = mean(block(:));
end
end
参考代码 基于核PCA和二维PCA的人脸识别程序 www.youwenfan.com/contentcni/65310.html
四、可视化模块
1. 特征脸可视化
figure;
for i = 1:5
subplot(2,3,i);
imshow(reshape(mean(X_train(coeff(:,i),:),2), [112,92]));
title(sprintf('2DPCA特征%d',i));
end
2. 决策边界可视化
% 二维特征可视化
figure;
gscatter(test_feat(:,1), test_feat(:,2), labels);
hold on;
plot(support_vectors(:,1), support_vectors(:,2),'kx','MarkerSize',10);
title('SVM决策边界');
五、扩展应用方向
-
动态人脸识别
% 视频帧间特征关联 prev_feat = extract_features(prev_frame); current_feat = extract_features(curr_frame); motion_vector = current_feat - prev_feat; -
跨域适应
% 领域自适应训练 domain_adapt_model = fitcdiscr(source_feat, source_labels); transferred_feat = predict(domain_adapt_model, target_feat);
六、注意事项
- 数据集准备:建议使用ORL或Yale人脸数据库,确保图像尺寸统一(如112×92)
- 参数调优:通过网格搜索优化KPCA的核参数(γ)和2DPCA的主成分数量
- 实时性要求:在Jetson Nano平台测试时,建议将图像缩放至64×64分辨率
浙公网安备 33010602011771号