基于核主成分分析和二维主成分分析的人脸识别MATLAB实现

基于核主成分分析(Kernel PCA)和二维主成分分析(2DPCA)的人脸识别MATLAB实现


一、matlab代码实现

1. 数据预处理模块

function [X_norm, mean_face] = preprocess_data(imds)
    % 图像向量化与归一化
    X = double(reshape(imds.Files{1}, [], 1));
    for i = 2:numel(imds.Files)
        X = [X; double(reshape(imds.Files{i}, [], 1))];
    end
    
    % 零均值化
    mean_face = mean(X, 1);
    X_norm = X - repmat(mean_face, size(X,1), 1);
    
    % 数据划分
    cv = cvpartition(size(X,1),'HoldOut',0.3);
    X_train = X_norm(cv.training,:);
    X_test = X_norm(cv.test,:);
end

2. 核PCA实现(高斯核)

function [K_pca, alpha] = kernel_pca(X, kernel_type, param)
    % 计算核矩阵
    n = size(X,1);
    K = zeros(n,n);
    for i = 1:n
        for j = 1:n
            switch kernel_type
                case 'rbf'
                    K(i,j) = exp(-norm(X(i,:)-X(j,:))^2 / (2*param^2));
                case 'poly'
                    K(i,j) = (X(i,:) * X(j,:) + 1).^param;
            end
        end
    end
    
    % 中心化核矩阵
    one_n = ones(n)/n;
    K_center = K - one_n*K - K*one_n + one_n*K*one_n;
    
    % 特征分解
    [alpha, ~] = eig(K_center);
    [~, idx] = sort(diag(alpha),'descend');
    alpha = alpha(:,idx);
end

3. 二维PCA实现

function [coeff, score] = two_d_pca(X)
    % 图像矩阵分解
    [rows, cols, num_samples] = size(X);
    X_reshaped = double(reshape(X, rows*cols, num_samples));
    
    % 计算协方差矩阵
    cov_mat = (X_reshaped * X_reshaped') / (num_samples - 1);
    
    % 特征分解
    [V, D] = eig(cov_mat);
    [~, idx] = sort(diag(D),'descend');
    V = V(:,idx);
    
    % 特征投影
    coeff = V(:,1:2);  % 取前两个主成分
    score = X_reshaped * coeff;
end

4. 完整识别流程

%% 主程序
clear; clc; close all;

% 加载ORL数据集
dataPath = 'orl_faces/';
[imds, labels] = loadORLData(dataPath);

% 数据预处理
[X_norm, mean_face] = preprocess_data(imds);

% KPCA降维(参数:高斯核gamma=0.05)
K_pca = kernel_pca(X_norm, 'rbf', 0.05);
K_pca_train = K_pca(cv.training,:);
K_pca_test = K_pca(cv.test,:);

% 2DPCA特征提取
coeff = two_d_pca(reshape(imds.Files{1},112,92));
train_feat = K_pca_train * coeff;
test_feat = K_pca_test * coeff;

% SVM分类
template = templateSVM('KernelFunction','rbf','Standardize',true);
model = fitcecoc(train_feat, labels(cv.training));
predicted = predict(model, test_feat);

% 性能评估
accuracy = sum(predicted == labels(cv.test)) / numel(labels(cv.test));
fprintf('识别准确率: %.2f%%
', accuracy*100);

二、关键技术解析

1. 核函数选择对比

核函数类型 参数范围 适用场景 优势
RBF核 γ∈(0,100) 非线性可分数据 强非线性映射能力
多项式核 d∈(1,10) 结构化数据 保留数据局部结构
线性核 无参数 线性可分数据 计算效率高

2. 2DPCA优化策略

% 加权2DPCA(空间注意力机制)
function [coeff] = weighted_2d_pca(X, weight_matrix)
    [rows, cols, num_samples] = size(X);
    X_weighted = X .* repmat(weight_matrix, [1,1,num_samples]);
    cov_mat = (X_weighted * X_weighted') / (num_samples - 1);
    [V, ~] = eig(cov_mat);
    [~, idx] = sort(diag(V),'descend');
    coeff = V(:,idx(1:2));
end

三、工程优化方案

1. GPU加速实现

% 使用gpuArray加速
X_gpu = gpuArray(X_norm);
K_pca_gpu = kernel_pca(X_gpu, 'rbf', 0.05);
test_feat_gpu = K_pca_gpu * coeff;

2. 分块处理策略

% 图像分块处理(256x256→64x64块)
block_size = 64;
num_blocks = (112/block_size)^2;
features = zeros(size(X,1), num_blocks);
for i = 1:block_size:112
    for j = 1:block_size:92
        block = X(:,(i-1)*block_size+1:i*block_size, (j-1)*block_size+1:j*block_size);
        features(:,((i-1)/block_size)*block_size + (j-1)/block_size +1) = mean(block(:));
    end
end

参考代码 基于核PCA和二维PCA的人脸识别程序 www.youwenfan.com/contentcni/65310.html

四、可视化模块

1. 特征脸可视化

figure;
for i = 1:5
    subplot(2,3,i);
    imshow(reshape(mean(X_train(coeff(:,i),:),2), [112,92]));
    title(sprintf('2DPCA特征%d',i));
end

2. 决策边界可视化

% 二维特征可视化
figure;
gscatter(test_feat(:,1), test_feat(:,2), labels);
hold on;
plot(support_vectors(:,1), support_vectors(:,2),'kx','MarkerSize',10);
title('SVM决策边界');

五、扩展应用方向

  1. 动态人脸识别

    % 视频帧间特征关联
    prev_feat = extract_features(prev_frame);
    current_feat = extract_features(curr_frame);
    motion_vector = current_feat - prev_feat;
    
  2. 跨域适应

    % 领域自适应训练
    domain_adapt_model = fitcdiscr(source_feat, source_labels);
    transferred_feat = predict(domain_adapt_model, target_feat);
    

六、注意事项

  1. 数据集准备:建议使用ORL或Yale人脸数据库,确保图像尺寸统一(如112×92)
  2. 参数调优:通过网格搜索优化KPCA的核参数(γ)和2DPCA的主成分数量
  3. 实时性要求:在Jetson Nano平台测试时,建议将图像缩放至64×64分辨率
posted @ 2025-10-14 10:38  csoe9999  阅读(12)  评论(0)    收藏  举报