NSGA-II非支配排序遗传算法
NSGA-II(非支配排序遗传算法II)
NSGA-II是一种多目标优化算法,广泛应用于解决具有多个目标的优化问题。与传统的遗传算法相比,NSGA-II通过非支配排序和拥挤距离机制,能够有效避免陷入局部最优,属于全局优化算法。它在多目标优化领域表现出色,能够同时优化多个目标,并生成一组非支配解(Pareto前沿)。
1. NSGA-II的基本原理
1.1 非支配排序
非支配排序是一种用于评估个体在多目标优化中的优势的方法。如果一个解在所有目标上都不比另一个解差,并且至少在一个目标上比另一个解好,则称这个解非支配另一个解。通过非支配排序,可以将种群分为多个非支配层。
1.2 拥挤距离
拥挤距离用于评估个体在非支配层中的分布情况。通过计算每个个体在目标空间中的平均距离,可以避免解的过度集中,从而保持种群的多样性。
1.3 遗传操作
NSGA-II结合了选择、交叉和变异等遗传操作,通过这些操作生成新的种群,并逐步逼近最优解。
2. MATLAB实现
2.1 初始化种群
function population = initializePopulation(populationSize, numVariables, lowerBound, upperBound)
population = zeros(populationSize, numVariables);
for i = 1:populationSize
population(i, :) = lowerBound + (upperBound - lowerBound) .* rand(1, numVariables);
end
end
2.2 非支配排序
function [fronts, crowdingDistance] = nonDominatedSorting(population, objectives)
populationSize = size(population, 1);
fronts = {};
front = [];
dominatedCount = zeros(populationSize, 1);
dominates = cell(populationSize, 1);
crowdingDistance = zeros(populationSize, 1);
for i = 1:populationSize
for j = 1:populationSize
if i ~= j
if all(objectives(i, :) <= objectives(j, :)) && any(objectives(i, :) < objectives(j, :))
dominates{i} = [dominates{i}; j];
elseif all(objectives(j, :) <= objectives(i, :)) && any(objectives(j, :) < objectives(i, :))
dominatedCount(i) = dominatedCount(i) + 1;
end
end
end
end
frontIndex = find(dominatedCount == 0);
front = frontIndex;
fronts{1} = front;
while ~isempty(front)
nextFront = [];
for i = front
for j = dominates{i}
dominatedCount(j) = dominatedCount(j) - 1;
if dominatedCount(j) == 0
nextFront = [nextFront; j];
end
end
end
front = nextFront;
if ~isempty(front)
fronts{end+1} = front;
end
end
for i = 1:length(fronts)
front = fronts{i};
for j = 1:size(objectives, 2)
[sortedObjectives, sortIndex] = sort(objectives(front, j));
crowdingDistance(sortIndex) = crowdingDistance(sortIndex) + [0; diff(sortedObjectives)];
end
end
end
2.3 拥挤距离排序
function sortedIndex = crowdingDistanceSorting(crowdingDistance)
[~, sortedIndex] = sort(crowdingDistance, 'descend');
end
2.4 选择操作
function selectedPopulation = selection(population, objectives, populationSize)
[fronts, crowdingDistance] = nonDominatedSorting(population, objectives);
selectedPopulation = [];
for i = 1:length(fronts)
front = fronts{i};
if size(selectedPopulation, 1) + length(front) <= populationSize
selectedPopulation = [selectedPopulation; population(front, :)];
else
remaining = populationSize - size(selectedPopulation, 1);
sortedIndex = crowdingDistanceSorting(crowdingDistance(front));
selectedPopulation = [selectedPopulation; population(front(sortedIndex(1:remaining)), :)];
break;
end
end
end
2.5 交叉操作
function offspring = crossover(parent1, parent2, crossoverRate)
if rand < crossoverRate
crossoverPoint = randi([1, size(parent1, 2)]);
offspring1 = [parent1(1:crossoverPoint), parent2(crossoverPoint+1:end)];
offspring2 = [parent2(1:crossoverPoint), parent1(crossoverPoint+1:end)];
else
offspring1 = parent1;
offspring2 = parent2;
end
offspring = [offspring1; offspring2];
end
2.6 变异操作
function mutatedIndividual = mutation(individual, mutationRate, lowerBound, upperBound)
for i = 1:length(individual)
if rand < mutationRate
individual(i) = lowerBound(i) + (upperBound(i) - lowerBound(i)) * rand;
end
end
mutatedIndividual = individual;
end
2.7 主函数
function [population, objectives] = NSGA2(populationSize, numVariables, numObjectives, lowerBound, upperBound, maxGenerations, crossoverRate, mutationRate)
% 初始化种群
population = initializePopulation(populationSize, numVariables, lowerBound, upperBound);
% 评估初始种群
objectives = evaluateObjectives(population);
for generation = 1:maxGenerations
% 选择操作
selectedPopulation = selection(population, objectives, populationSize);
% 交叉操作
offspring = [];
for i = 1:2:populationSize
parent1 = selectedPopulation(i, :);
parent2 = selectedPopulation(i+1, :);
offspring = [offspring; crossover(parent1, parent2, crossoverRate)];
end
% 变异操作
for i = 1:size(offspring, 1)
offspring(i, :) = mutation(offspring(i, :), mutationRate, lowerBound, upperBound);
end
% 合并种群
combinedPopulation = [population; offspring];
combinedObjectives = [objectives; evaluateObjectives(offspring)];
% 选择下一代
[population, objectives] = selection(combinedPopulation, combinedObjectives, populationSize);
% 显示进度
fprintf('Generation %d\n', generation);
end
end
function objectives = evaluateObjectives(population)
% 示例目标函数
objectives = zeros(size(population, 1), 2);
for i = 1:size(population, 1)
objectives(i, 1) = sum(population(i, :).^2);
objectives(i, 2) = sum((population(i, :) - 1).^2);
end
end
3. 调用NSGA-II
% 参数设置
populationSize = 100;
numVariables = 2;
numObjectives = 2;
lowerBound = [0, 0];
upperBound = [1, 1];
maxGenerations = 100;
crossoverRate = 0.9;
mutationRate = 0.1;
% 调用NSGA-II
[population, objectives] = NSGA2(populationSize, numVariables, numObjectives, lowerBound, upperBound, maxGenerations, crossoverRate, mutationRate);
% 可视化结果
figure;
plot(objectives(:, 1), objectives(:, 2), 'o');
xlabel('Objective 1');
ylabel('Objective 2');
title('Pareto Front');
参考代码 NSGA-II非支配排序遗传算法,可避免陷入局部最优,属于全局算法 youwenfan.com/contentcnb/79674.html
4. 结论
NSGA-II是一种强大的多目标优化算法,能够有效避免陷入局部最优,属于全局优化算法。通过非支配排序和拥挤距离机制,NSGA-II能够生成一组非支配解,适用于解决复杂的多目标优化问题。
浙公网安备 33010602011771号