01背包问题是最经典的背包问题,没有之一。

关于背包问题,我举过一个例子,有一天,阿里巴巴背着一个背包来到了山洞里,面对大量的金银财宝,他的背包却容量有限,他要如何选择呢?假如说这些财宝可以无限分割,例如是金粉,银粉,铜粉,他只要贪心地先放金,再放银,最后放铜,直到装满,那么如果这些财宝各有体积且无法切割,很显然,贪心无法解决这个问题,那么就只能使用动态规划了。

举个例题

Bone Collector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 128982    Accepted Submission(s): 51264

Problem Description
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output
One integer per line representing the maximum of the total value (this number will be less than 231).
Sample Input
1 5 10 1 2 3 4 5 5 4 3 2 1
Sample Output
14
 
本题为01背包裸题,其状态转移方程为dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]),dp[i][j]表示遍历到第i个物品,使用了j的容量时得到的最大价值,其值由是否将这个物品放入决定。w[i]表示第i个物品的体积,v[i]表示第i个物品的价值。
然而二维的空间实在太多,容易超出内存限制,我们又观察到第i行只由第i-1行决定,于是我们可以将第一个维度删除,状态转移方程变为dp[j]=max(dp[j],dp[j-w[i]]+v[i])。这个操作被称为滚动数组。可是我们又发现这样操作之后原式的dp[i-1][j-w[i]]+v[i]会被覆盖为dp[i][j-w[i]]+v[i],出现了错误,所以在遍历j的时候我们从右往左遍历,这样就不会被覆盖了。
代码如下
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll dp[1005];
int w[1005];
int v[1005];
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        int n,vo;
        scanf("%d%d",&n,&vo);
        for(int i=1;i<=n;i++)scanf("%d",&v[i]);
        for(int i=1;i<=n;i++)scanf("%d",&w[i]);
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++){
            for(int j=vo;j>=w[i];j--){
                dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
            }
        }
        printf("%lld\n",dp[vo]);
    }
    return 0;
}

 

posted on 2021-07-22 10:37  雪之下雪乃天下第一  阅读(73)  评论(0)    收藏  举报