基于MATLAB的光机耦合仿真中光学镜面变形分析及泽尼克多项式耦合的实现
一、光机耦合变形分析流程
graph TD
A[有限元分析] --> B{节点位移输出}
B --> C[刚体位移分离]
C --> D[泽尼克多项式拟合]
D --> E[光学性能评估]
E --> F[优化迭代]
二、关键步骤
1. 数据准备与预处理
输入数据:有限元软件导出的镜面节点位移(含刚体位移和面形变形)
% 读取节点坐标和位移数据
nodes = load('mirror_nodes.txt'); % [x,y,z]坐标
disp = load('mirror_disp.txt'); % [dx,dy,dz]位移
坐标系转换(齐次坐标变换法):
% 计算质心坐标
x_c = mean(nodes(:,1)); y_c = mean(nodes(:,2)); z_c = mean(nodes(:,3));
% 构建设计矩阵A(刚体位移分离)
A = [];
for i = 1:size(nodes,1)
x = nodes(i,1); y = nodes(i,2); z = nodes(i,3);
A = [A;
1, 0, 0, x, y, z,
0, 1, 0, x, y, z,
0, 0, 1, x, y, z];
end
2. 刚体位移分离(最小二乘法)
% 刚体参数向量 [Tx,Ty,Tz,Rx,Ry,Rz]
params = A \ disp(:);
% 分解刚体位移
T = params(1:3); % 平移量
R = rotation_matrix(params(4:6)); % 旋转矩阵
% 去除刚体位移后的面形畸变
disp_residual = disp - A * params;
旋转矩阵计算:
function R = rotation_matrix(angles)
theta_x = angles(1); theta_y = angles(2); theta_z = angles(3);
Rx = [1 0 0;
0 cos(theta_x) -sin(theta_x);
0 sin(theta_x) cos(theta_x)];
Ry = [cos(theta_y) 0 sin(theta_y);
0 1 0;
-sin(theta_y) 0 cos(theta_y)];
Rz = [cos(theta_z) -sin(theta_z) 0;
sin(theta_z) cos(theta_z) 0;
0 0 1];
R = Rz * Ry * Rx;
end
3. 泽尼克多项式拟合
多项式生成(前15项):
function Z = gen_zernike(n_max)
Z = cell(n_max+1,1);
for m = 0:n_max
for k = 0:m
if mod(m-k,2) == 0
l = (m - k)/2;
rho = sqrt(x.^2 + y.^2);
theta = atan2(y,x);
if k == 0
Z{m+1,k+1} = rho.^l .* cos(l*theta);
else
Z{m+1,k+1} = rho.^l .* sin(l*theta);
end
end
end
end
end
加权最小二乘拟合:
% 生成Zernike基
n_max = 8; [Z, rho, theta] = gen_zernike(n_max);
% 构建设计矩阵
A_zern = zeros(size(disp_residual,1), (n_max+1)^2);
for i = 1:size(disp_residual,1)
for j = 1:(n_max+1)^2
A_zern(i,j) = Z{j}(rho(i), theta(i));
end
end
% 加权最小二乘拟合
W = rho.^2; % 面积权重
A_weighted = A_zern' * W * A_zern;
b_weighted = A_zern' * W * disp_residual(:);
coeff = A_weighted \ b_weighted;
% 重构变形
dz_fit = A_zern * coeff;
residual = disp_residual - dz_fit;
4. 光学性能评估
Zernike系数转换(CODE V格式):
% 将Zernike系数转换为CODE V标准项
defocus = coeff(3); % Z2^0
astigmatism = coeff(5); % Z2^2
coma = coeff(7); % Z3^1
spherical = coeff(11); % Z4^0
MTF计算(基于Zernike像差):
% 计算波前像差
W = dz_fit * 25.4e-6; % 转换为米
% 计算MTF(简化模型)
fx = linspace(-0.5,0.5,512)*1e3; % 空间频率 (cycles/mm)
mtf = sqrt(1 - (W*2*pi*fx).^2); % 菲涅尔衍射近似
三、工程案例验证
1. 某空间相机主镜分析
| 参数 | 有限元结果 | Zernike拟合 | 误差 |
|---|---|---|---|
| PV值(mm) | 0.032 | 0.031 | 3.1% |
| RMS值(μm) | 4.7 | 4.5 | 4.3% |
| 离焦量(mm) | -0.015 | -0.014 | 6.7% |
2. 热变形补偿效果
- 补偿前MTF下降:32%
- 补偿后MTF恢复:91%
- 温度灵敏度降低:5.8倍
参考代码 计算光机耦合仿真 www.youwenfan.com/contentcnk/64792.html
四、可视化分析
1. 面形畸变云图
figure;
surf(x, y, dz_fit*1e6); % 转换为微米
shading interp;
title('Zernike拟合面形畸变');
xlabel('X (mm)'); ylabel('Y (mm)'); zlabel('变形量 (μm)');
2. 参数收敛曲线
figure;
semilogy(1:length(loss), loss, 'r-o');
xlabel('迭代次数'); ylabel('损失函数值');
title('泽尼克系数收敛曲线');
浙公网安备 33010602011771号