赫尔德(Holder)不等式

若 $p,q > 1$,且 $\frac{1}{p} + \frac{1}{q} = 1$,则对于任意的 $n$ 维向量 $a = \left \{ x_{1},x_{2},...,x_{n} \right \}$$b = \left \{ y_{1},y_{2},...,y_{n} \right \}$,有

$$\sum_{i = 1}^{n}|x_{i}|\cdot |y_{i}| \leq \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}$$

证明:

   令 $u = \frac{|x_{i}|}{\left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}}$$v = \frac{|y_{i}|}{\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}}$,由杨氏不等式有

$$uv = \frac{|x_{i}|}{\left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}} \cdot \frac{|y_{i}|}{\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}} \leq \frac{u^{p}}{p} + \frac{v^{q}}{q} = \frac{|x_{i}|^{p}}{p\sum_{i=1}^{n}|x_{i}|^{p} } + \frac{|y_{i}|^{q}}{ q\sum_{i=1}^{n}|y_{i}|^{q}}$$

   对于上式两边 $i$ 从 $1$ 到 $n$ 做连加得

$$\sum_{i=1}^{n}\frac{|x_{i}|}{\left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}} \cdot \frac{|y_{i}|}{\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}} \leq \sum_{i=1}^{n}\frac{|x_{i}|^{p}}{p\sum_{i=1}^{n}|x_{i}|^{p} } + \sum_{i=1}^{n}\frac{|y_{i}|^{q}}{ q\sum_{i=1}^{n}|y_{i}|^{q}} = \frac{1}{p} + \frac{1}{q} = 1$$

$$\therefore \sum_{i=1}^{n} uv \leq 1$$

   于是有

$$\sum_{i = 1}^{n}|x_{i}|\cdot |y_{i}| \leq \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}$$

证毕

 

posted @ 2020-07-20 10:41  _yanghh  阅读(5732)  评论(0编辑  收藏  举报