并不对劲的bzoj5322:loj2543:p4561:[JXOI2018]排序问题

题目大意

\(T\)(\(T\leq10^5\))组询问
每次给出\(n,m,l,r\),和\(n\)个数\(a_1,a_2,...,a_n\),要找出\(m\)个可重复的在区间\([l,r]\)的数,使\(a_1,a_2,...,a_n\)和选出的\(m\)个数组成的序列期望随机排序得到升序序列的次数最多
输出序列最多期望随机排序几轮,模998244353
\(n\leq2\times10^5,\sum n\leq2\times10^6,m\leq10^7,a_i\leq10^9\)

题解

假设选出\(m\)个数后,一轮随机排序得到升序序列的概率为\(p\)
那么就相当于一轮随机排序期望得到\(p\)个升序序列
题目想要一个升序序列,那么期望\(\frac{1}{p}\)轮随机排序后得到一个升序序列
问题转化为求一轮随机排序后得到升序序列的概率
可以直接用\(\frac{合法方案数}{总方案数}\)
长度为\(n+m\)的序列的总方案数是\((n+m)!\)
至于合法方案数,可以看成将序列排序后,交换相等的数得到的序列数,那么设值为\(i\)的数出现了\(b_i\)次,就有合法方案数=\(\sum b_i!\)
现在要最大化\(\frac{1}{\frac{\sum b_i!}{(n+m)!}}\),相当于是最小化\(\sum b_i!\)
发现尽量将\(m\)个数放到出现次数较小的值会更优
因为假设有两个值\(x,y\)\(b_x>b_y\),则有新加入一个\(=x\)的值,会让答案乘上\(b_x+1\),而如果新加入\(=y\)的值,就会使答案乘上\(b_y+1\),取\(y\)会更优
那么就可以选\(m\)次区间\([l,r]\)中出现次数最少的数
但是\(m\)比较大,考虑另一种统计方式
二分一个值\(k\),将出现次数少于\(k\)的值取至出现次数等于\(k\),判断够不够
因为\(n\)总共只有\(2\times10^6\),所以一个\(log\)能过
并不会不用二分的方法

代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define maxn 200017
#define LL long long
#define D double 
using namespace std;
int read()
{
	int x=0,f=1;char ch=getchar();
	while(!isdigit(ch)&&ch!='-')ch=getchar();
	if(ch=='-')f=-1,ch=getchar();
	while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
	return x*f;
}
void write(int x)
{
	if(x==0){putchar('0'),putchar('\n');return;}
	int f=0;char ch[20];
	if(x<0)putchar('-'),x=-x;
	while(x)ch[++f]=x%10+'0',x/=10;
	while(f)putchar(ch[f--]);
	putchar('\n');
	return;
}
int n,m,l,r,fac[maxn+10000000],ny[maxn+10000000],s1[maxn],tp1,s2[maxn],tp2,ans,num;
const LL mod=998244353;
int mul(int x,int y){int res=1;while(y){if(y&1)res=(LL)res*x%mod;x=(LL)x*x%mod,y>>=1;}return res;}
signed main()
{
	fac[0]=1;int tm=0;
	rep(i,1,maxn-17+10000000)fac[i]=(LL)fac[i-1]*i%mod;
	ny[maxn-17+10000000]=mul(fac[maxn-17+10000000],mod-2);
	dwn(i,maxn-18+10000000,0)ny[i]=(LL)ny[i+1]*(i+1)%mod;
	int t=read();
	while(t--)
	{
		n=read(),m=read(),l=read(),r=read();tp1=tp2=0;ans=1;
		rep(i,1,n)
		{
			int x=read();
			if(x>=l&&x<=r)s1[++tp1]=x;
			else s2[++tp2]=x;
		}
		sort(s1+1,s1+tp1+1),sort(s2+1,s2+tp2+1);
		s1[0]=l-1,s1[tp1+1]=r+1;int tmp=1,zero=0,L=1,R=ceil((D)(m+tp1)/(D)(r-l+1));
		rep(i,0,tp1)if(s1[i+1]!=s1[i])zero+=s1[i+1]-s1[i]-1;
		if(zero<m)
		{
			ans=-1;int ans2=-1,ans3=-1;
			while(L<=R)
			{
				int mid=(L+R)>>1;int tmp=zero*mid,cnt=0,cnt2=0,cnt3=0;num=0;
				rep(i,1,tp1)
				{
					num++;
					if(s1[i]!=s1[i+1]){if(num<mid)tmp+=mid-num,cnt2++,cnt3+=num;num=0;}
				}
				if(tmp>=m){if(mid<ans||ans==-1)ans3=cnt3,ans=mid,ans2=cnt2;R=mid-1;}
				else L=mid+1;
			}
			int num1=ans*(ans2+zero)-(m+ans3);tmp=ans;
			ans=(LL)mul(ny[ans],ans2+zero-num1)*mul(ny[ans-1],num1)%mod;
		}
		num=0;
		rep(i,1,tp1){num++;if(s1[i]!=s1[i+1]){if(num>=tmp)ans=(LL)ans*ny[num]%mod;num=0;}}
		num=0;
		rep(i,1,tp2){num++;if(i==tp2||s2[i]!=s2[i+1])ans=(LL)ans*ny[num]%mod,num=0;} ;
		write((LL)ans*fac[n+m]%mod); 
	}
	return 0;
}

posted @ 2019-04-15 12:42  echo6342  阅读(181)  评论(0)    收藏  举报