学数答题160911-三次函数

题160911(14分)已知三次函数$f\left( x \right)$有三个零点${{x}_{1}},{{x}_{2}},{{x}_{3}}$,且在点$\left( {{x}_{i}},f\left( {{x}_{i}} \right) \right)$处切线的斜率为${{k}_{i}}$($i=1,2,3$).

证明:$\frac{1}{{{k}_{1}}}+\frac{1}{{{k}_{2}}}+\frac{1}{{{k}_{3}}}=0$.


 

:由题意不妨设$f\left( x \right)=a\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)\left( x-{{x}_{3}} \right)$($a\ne 0$),则

$f'\left( x \right)=a\left[ \left( x-{{x}_{2}} \right)\left( x-{{x}_{3}} \right)+\left( x-{{x}_{1}} \right)\left( x-{{x}_{3}} \right)+\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right) \right]$

故$\dfrac{1}{{{k}_{1}}}+\dfrac{1}{{{k}_{2}}}+\dfrac{1}{{{k}_{3}}}$

$=\dfrac{1}{f'\left( {{x}_{1}} \right)}+\dfrac{1}{f'\left( {{x}_{2}} \right)}+\dfrac{1}{f'\left( {{x}_{3}} \right)}$

$=\dfrac{1}{a\left( {{x}_{1}}-{{x}_{2}} \right)\left( {{x}_{1}}-{{x}_{3}} \right)}+\dfrac{1}{a\left( {{x}_{2}}-{{x}_{1}} \right)\left( {{x}_{2}}-{{x}_{3}} \right)}+\dfrac{1}{a\left( {{x}_{3}}-{{x}_{1}} \right)\left( {{x}_{3}}-{{x}_{2}} \right)}$

$=\dfrac{\left( {{x}_{2}}-{{x}_{3}} \right)+\left( {{x}_{3}}-{{x}_{1}} \right)+\left( {{x}_{1}}-{{x}_{2}} \right)}{a\left( {{x}_{1}}-{{x}_{2}} \right)\left( {{x}_{1}}-{{x}_{3}} \right)\left( {{x}_{2}}-{{x}_{3}} \right)}$

$=0$

posted @ 2016-09-11 21:58  学数团  阅读(145)  评论(0编辑  收藏  举报