数据结构之排序算法
快速排序
应该是数据结构中排序中最重要的一个,包括其中的patition思想,以及后面的整体的分治思想,都对于解决实际问题有很大的借鉴。快速排序是一种交换排序的方法,不稳定,也就是说如果两个相同的数,快排之后二者可能交换位置。
1.首先来看partition函数,函数名partition(data, l, r),在data[l,r]中找到第l个数的位置i,使得i左侧的数都小于该数,i右侧的数都大于该数,并返回位置i
def partition(data, l, r): i = l j = r x = data[i] while i<j: while i<j&data[j]>x: j -= 1 if i<j: data[i] = data[j] i += 1 while i<j&data[i]<x: i += 1 if i<j: data[j] = data[i] j -= 1 data[i] = x return i
2.然后对整个数组分治递归操作即可
def qsort(data, l, r): if l<r: i = partition(data, l, r) qsort(data, l, i-1) qsort(data, i+1, r) def quicksort(data): qsort(data, 0, len(data)-1)
归并排序:
def mergearray(nums, first, mid, last):
    tmp = []
    mid2 = mid + 1
    k = 0
    while first<=mid and mid2<=last:
        if nums[first]<nums[mid2]:
            tmp[k] = nums[first]
            first += 1
        else:
            tmp[k] = nums[mid2]
            mid2 += 1
        k += 1
    while  first<=mid:
        tmp[k] = nums[first]
        first += 1
        k += 1
    while mid2<=last:
        tmp[k] = nums[mid2]
        mid2 += 1
        k += 1
    for i in range(k):
        nums[first+i] = tmp[i]
def mergesort(nums, first, last):
    if first<last:
        mid = first + (last-first)/2
        mergesort(nums,first, mid)
        mergesort(nums, mid+1, last)
        mergearray(nums, first, mid, last)
def msort(nums):
    mergesort(nums, 0, len(nums)-1)
堆排序
def heapAdjust(nums, i):
    lchild = 2*i+1
    rchild = 2*i+2
    max = i
    if i <= len(nums)/2:
        if lchild<=len(nums) and nums[lchild]>nums[max]:
            max = lchild
        if rchild<=len(nums) and nums[rchild]>nums[max]:
            max = rchild
    if max != i:
        nums[max], nums[i] = nums[i], nums[max]
def buildHeap(nums):
    i = len(nums)/2
    while i >=0:
        heapAdjust(nums,i)
def headSort(nums):
    buildHeap(nums)
    i = len(nums) - 1
    while i>=0:
        nums[i], nums[0] = nums[0], nums[i]
        heapAdjust(nums[:-1],0)
                    
                
                
            
        
浙公网安备 33010602011771号