高等数学-极限与连续(极限)

极限
考虑函数 \(f(x) = \frac{x^a}{x^b} = x^{a-b}\)
(1)极限情况
\(a < b\)\(\displaystyle \lim_{x\to 0} x^{a-b} = \infty\)
\(a > b\)\(\displaystyle \lim_{x\to 0} x^{a-b} = 0\)
\(a = b\)\(\displaystyle \lim_{x\to 0} x^{a-b} = 1\)
(2)一般形式
对于 \(f(x) = \frac{n x^a}{m x^b} = \frac{n}{m} x^{a-b}\)\(n,m\) 为常数):

\[\lim_{x\to 0} f(x) = \begin{cases} \infty, & a < b \\ 0, & a > b \\ \frac{n}{m}, & a = b \end{cases} \]

(3)无穷小的比较
\(f(x), g(x)\) 均为 \(x\to 0\) 时的无穷小量,比较 \(\frac{f(x)}{g(x)}\)

1同阶无穷小:\(\displaystyle \lim_{x\to 0} \frac{f(x)}{g(x)} = C \neq 0\)
2等价无穷小:\(\displaystyle \lim_{x\to 0} \frac{f(x)}{g(x)} = 1\)
3高阶无穷小:\(\displaystyle \lim_{x\to 0} \frac{f(x)}{g(x)} = 0\)
4低阶无穷小:\(\displaystyle \lim_{x\to 0} \frac{f(x)}{g(x)} = \infty\)

(4) 常见等价无穷小(\(x \to 0\) 时)
在求极限(尤其是 \(\frac{0}{0}\)\(\frac{\infty}{\infty}\) 不定式)时,等价无穷小是最常用的工具:

\(f(x) \sim u(x)\)\(g(x) \sim v(x)\)(即 \(\lim_{x\to 0} \frac{f(x)}{u(x)} = 1\)\(\lim_{x\to 0} \frac{g(x)}{v(x)} = 1\)),且 \(\lim_{x\to 0} \frac{u(x)}{v(x)}\) 存在(有限或无穷),则

\[\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{u(x)}{v(x)}. \]

\(x \to 0\) 常用的等价无穷小关系(记作 \(\sim\)):

  • \(\sin x \sim x\)
  • \(\tan x \sim x\)
  • \(\arcsin x \sim x\)
  • \(\arctan x \sim x\)
  • \(1 - \cos x \sim \frac{1}{2} x^2\)
  • \(\ln(1+x) \sim x\)
  • \(e^x - 1 \sim x\)
  • \((1+x)^\alpha - 1 \sim \alpha x\)\(\alpha\) 为任意常数)
posted on 2026-01-16 12:02  花开蝶自来==  阅读(15)  评论(0)    收藏  举报