Flink1.18 Transfrom - CustomPartition自定义分区器

自定义分区类,实现Partitioner接口

package com.xiaohu.transfrom;

import org.apache.flink.api.common.functions.Partitioner;

public class MyPartitioner implements Partitioner<String> {
    @Override
    public int partition(String key, int numPartitions) {
        return Integer.parseInt(key)%numPartitions;
    }
}

使用自定义分区类

package com.xiaohu.transfrom;

import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class CustomPartitionDemo {
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf);
        env.setParallelism(2);
        //设置流处理环境还是批处理环境 DataSet API已经过时了,现在都是一套代码,进行设置
//        env.setRuntimeMode(RuntimeExecutionMode.BATCH); //批处理
//        env.setRuntimeMode(RuntimeExecutionMode.STREAMING); //流处理,默认就是流处理
        //一般情况下,不会在代码中指定,不够灵活,一般都是在提交的时候,使用命令进行指定 flink run  -Dexecution.runtime-mode=BATCH【STREAMING】 ...

        DataStreamSource<String> socketDS = env.socketTextStream("master", 7777);

        // 第二个参数是数据,从数据中选择要分区的依据传给第一个自定义参数对象进行分区,觉得该条数据到哪一个分区中
        socketDS.partitionCustom(new MyPartitioner(), new KeySelector<String, String>() {
            @Override
            public String getKey(String value) throws Exception {
                return value;
            }
        }).print();


        env.execute();
    }
}
posted @ 2025-02-26 20:32  Xiaohu_BigData  阅读(52)  评论(0)    收藏  举报