摘要:
MindSpore API编程概述 总体架构 MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景覆盖三大目标,其中易开发表现为API友好、调试难度低,高效执行包括计算效率、数据预处理效率和分布式训练效率,全场景则指框架同时支持云、边缘以及端侧场景。 MindSpore总体架 阅读全文
posted @ 2021-01-23 11:05
吴建明wujianming
阅读(380)
评论(0)
推荐(0)
摘要:
MindSpore数据集mindspore::dataset ResizeBilinear #include <image_process.h> bool ResizeBilinear(LiteMat &src, LiteMat &dst, int dst_w, int dst_h) 通过双线性算法 阅读全文
posted @ 2021-01-23 10:21
吴建明wujianming
阅读(363)
评论(0)
推荐(0)
摘要:
MindSpore接口mindspore::api Context #include <context.h> Context类用于保存执行中的环境变量。 静态公有成员函数 Instance static Context &Instance(); 获取MindSpore Context实例对象。 公有 阅读全文
posted @ 2021-01-23 10:11
吴建明wujianming
阅读(174)
评论(0)
推荐(0)
摘要:
MindSpore应用目标 以下将展示MindSpore近一年的高阶计划,会根据用户的反馈诉求,持续调整计划的优先级。 总体而言,会努力在以下几个方面不断改进。 1. 提供更多的预置模型支持。 2. 持续补齐API和算子库,改善易用性和编程体验。 3. 提供华为昇腾AI处理器的全面支持,并不断优化性 阅读全文
posted @ 2021-01-23 09:34
吴建明wujianming
阅读(188)
评论(0)
推荐(0)
摘要:
MindSpore图像分类模型支持(Lite) 图像分类介绍 图像分类模型可以预测图片中出现哪些物体,识别出图片中出现物体列表及其概率。 比如下图经过模型推理的分类结果为下表: 类别 概率 plant 0.9359 flower 0.8641 tree 0.8584 houseplant 0.786 阅读全文
posted @ 2021-01-23 09:26
吴建明wujianming
阅读(282)
评论(0)
推荐(0)
摘要:
MindSpore静态图语法支持 概述 在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。 关于Graph模式和计算图,可参考文档:https://www.mindspore.cn/tutorial/training/zh-CN/r 阅读全文
posted @ 2021-01-23 08:53
吴建明wujianming
阅读(367)
评论(0)
推荐(0)
摘要:
MindArmour差分隐私 总体设计 MindArmour的Differential-Privacy模块,实现了差分隐私训练的能力。模型的训练主要由构建训练数据集、计算损失、计算梯度以及更新模型参数等过程组成,目前MindArmour的差分隐私训练主要着力于计算梯度的过程,通过相应的算法对梯度进行 阅读全文
posted @ 2021-01-23 08:30
吴建明wujianming
阅读(574)
评论(0)
推荐(0)
摘要:
MindInsight张量可视设计介绍 特性背景 张量可视,能够帮助用户直观查看训练过程中的Tensor值,既支持以直方图的形式呈现Tensor的变化趋势,也支持查看某次step的具体Tensor值。Tensor包括权重值、梯度值、激活值等。 总体设计 Tensor可视主要是解析由MindSpore 阅读全文
posted @ 2021-01-23 08:20
吴建明wujianming
阅读(150)
评论(0)
推荐(0)
摘要:
MindInsight计算图可视设计 特性背景 计算图可视的功能,主要协助开发者在下面这些场景中使用。 开发者在编写深度学习神经网络的代码时,可以使用计算图的功能查看神经网络中算子的数据流走向,以及模型结构。 计算图还可以方便开发者查看指定节点的输入和输出节点,以及所查找的节点的属性信息。 开发者在 阅读全文
posted @ 2021-01-23 07:56
吴建明wujianming
阅读(148)
评论(0)
推荐(0)
摘要:
MindInsight训练可视整体设计介绍 MindInsight是MindSpore的可视化调试调优组件。通过MindInsight可以完成训练可视、性能调优、精度调优等任务。 训练可视功能主要包括训练看板、模型溯源、数据溯源等功能,训练看板中又包括标量、参数分布图、计算图、数据图、数据抽样、张量 阅读全文
posted @ 2021-01-23 07:35
吴建明wujianming
阅读(220)
评论(0)
推荐(0)

浙公网安备 33010602011771号