博客园 首页 私信博主 显示目录 隐藏目录 管理 动画

Sequence(Poj2442)

Sequence(Poj2442)

题意:

有m个数列,每个数列n个值,每个序列中选取一个值可以组成n^m种不同的序列,求前n小的序列和。

Input

1
2 3
1 2 3
2 2 3

Output

3 3 4

分析:

用两个优先队列维护前n小和。首先将第一列n个数字放入从大到小的优先队列中,每次弹出一个最小值和下一行的每个元素相加,并放入另一个从小到大的优先队列中,当放满n个值时,每次求和结果先和队列中的top对比,若小于top则弹出并塞入这个和,否则舍弃这个较大和。这样维护的就是求和到第i行时的前n小序列和。当数列中n个元素都和下一列的元素求和完后,将这些前n小和又倒出来塞入从大到小的队列中,这样就和一开始对第一行的数列一样,每次选取一个最小值进行和后面的值求和,并将和塞入从小到大的优先队列中,这样反复倒腾最后加和到最后一行时仍然是所有数列求和的最小值,然后放入从大到小的数列中,依次弹出即是升序输出。


• 两组两组的看,首先要排序,然后从头开始找最小的N个和。

• 怎么找是个问题,对于第一组我们取i=1,第二组取j=1,然后a[1]+b[1]肯定是最小的,然后a[2]+b[1],a[1]+b[2]进入候选项,如果我们下一次选中了a[2]+b[1],那么我们又要将a[3]+b[1],a[2]+b[2]加入候选项。

• 但是我们要保证产生候选项不能重复,比如a[1]+b[2]和a[2]+b[1]都可以产生a[2]+b[2],所以我们要排除其中的一种,也就是说,我们要将候选项的下标计算变得有限制。

• 候选项的下标都是通过选中当前项的下标加一得到的,那么为了避免重复,我们要制定一种规则。假如规定为如果j+1,那么这个候选项被选中的时候i就不能更新。

  1. i=1,j=1

• 更新i=2,j=1, flag = true

• 更新i=1, j=2, flag = false

  1. 假如选中i=2,j=1,flag = true

• 由于是true,可以更新i=3,j=1,flag = true

• 更新i=2,j=2,flag = false

  1. 假如选中i=1,j=2,flag = false

• 由于false,不能更新i

• 更新i=1,j=3,flag = false

......

对于两个序列我们就可以a[0]+b[0],a[1]+b[0]一直到a[n-1]+b[0],然后是依次加a[1],这样我们就可以得到一个新的序列,如果只有两个序列,那我们的序列就是符合条件的,如果对于三个序列那就是两个序列组成的新序列看成新的a序列,第三个序列就是b序列,想一想,是不是?

这样依次迭代,到最后就是所求的m个序列组成的新序列,如果我们全部暴力存储,显然时间和空间开销都是非常大的,到最后跟直接m个序列暴力是没有区别的,达到n^m。 每次维护长为n的数组就可以啦



#include<stdio.h>///两个优先队列组合使用
#include<queue>
using namespace std;
int main()
{
    int t,i,j,m,n,num;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&m,&n);
        priority_queue<int ,vector<int>,less<int> >s;///一个优先级 从 小->大
        priority_queue<int ,vector<int>,greater<int> >q;///一个优先级 从 大->小
        for(i=1; i<=m; i++)///输入m列
        {
            if(i==1)///先将第一列作为基础塞入q队列中
            {
                for(j=0; j<n; j++)
                {
                    scanf("%d",&num);
                    q.push(num);
                }
            }
            else
            {
                int numd[n+10],sum;
                for(j=0; j<n; j++)///几列,存入一个数组中
                {
                    scanf("%d",&numd[j]);
                }
                while(q.size())///从q队列中,一个一个选出元素,分别与后面输入的数组中的每一个值相加
                {
                    sum=q.top();///选出队首元素,记为sum
                    q.pop();///出列
                    for(j=0; j<n; j++)///和输入的数组中每个都加一遍
                    {
                        if(s.size()==n&&s.top()>sum+numd[j])///若超过或等于了n个元素,判断s队列中的队首(放入队列中的最大值)是否大于当前选出的数和数组中元素之和
                        {
                            s.pop();///若大于,弹出那个较大数,重新塞入求和而得的较小的数
                            s.push(sum+numd[j]);
                        }
                        else if(s.size()<n)///s队列中若没达到n个元素,加完就塞进去
                        {
                            s.push(sum+numd[j]);
                        }
                    }///这样一个循环下来,就将下一组数与当前q队列中的某一个元素相加完毕,并筛选出了前n个较小的求和数
                }///while的下一轮将求和队列中的下一个数,并继续筛选求和数中的前n小值
                while(s.size())///所有数筛选完毕此时在s队列中都是最小的前n个数
                {
                    q.push(s.top());
                    s.pop();
                }///每行完成更新后将求和结果统一塞回Q队列中准备下一行筛选求和
            }
        }
        while(q.size())
        {
            printf("%d%c",q.top(),(q.size()-1==0)?'\n':' ');
            q.pop();
        }
    }
    return 0;
}

 

posted @ 2020-06-17 11:44  5656566  阅读(259)  评论(0)    收藏  举报