Spark构建分类模型
出自:《spark机器学习》
以逻辑回归模型举例介绍完整的分类模型构建过程。
数据集下载:http://www.kaggle.com/c/stumbleupon
该数据集是关于网页中推荐的页面是短暂存在还是可以长时间流行的一个分类问题,目标值-1表示长久,0表示短暂。
首先将数据第一行删除,通过管道保存到以train_noheader.tsv命名的文件中
sed 1d train.tsv > train_noheader.tsv
启动spark-shell
spark-shell --driver-memory 4g
读入训练数据到RDD,并检查
val rawData = sc.textFile("train_noheader.tsv")
val records = rawData.map(line => line.split("\t"))
records.first
数据处理
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
val data = records.map { r =>
val trimmed = r.map(_.replaceAll("\"", ""))\\去掉多余的“符号
val label = trimmed(r.size - 1).toInt\\标签转化为整数
val features = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble)\\用0代替表示缺失数据的?。
LabeledPoint(label, Vectors.dense(features))\\存储标签和特征向量到Vectors中
}
对数据缓存和统计样本数
data.cache val numData = data.count
训练逻辑回归分类模型
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD val lrModel = LogisticRegressionWithSGD.train(data, numIterations)
使用分类模型
val dataPoint = data.first val prediction = lrModel.predict(dataPoint.features) // prediction: Double = 1.0\\预测为长久 val trueLabel = dataPoint.label // trueLabel: Double = 0.0\\实际为短暂
评估模型性能
预测的正确率(训练样本被正确分类的数目处于总样本数)
val lrTotalCorrect = data.map { point =>
if (lrModel.predict(point.features) == point.label) 1 else 0
}.sum
// lrTotalCorrect: Double = 3806.0
val lrAccuracy = lrTotalCorrect / numData
// lrAccuracy: Double = 0.5146720757268425//51.5%的正确率,结果不太好,跟随机预测差不多
模型评价指标:准确率-召回率(PR)曲线和ROC曲线的面积
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics//计算指标
val metrics = Seq(lrModel, svmModel).map { model =>
val scoreAndLabels = data.map { point =>
(model.predict(point.features), point.label)
}
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
(model.getClass.getSimpleName, metrics.areaUnderPR, metrics.areaUnderROC)
}//分别计算逻辑回归和支持向量机模型的指标
逻辑回归模型,PR:75%,ROC:50%,效果不好
改进模型与参数调优
统计数据
import org.apache.spark.mllib.linalg.distributed.RowMatrix val vectors = data.map(lp => lp.features) val matrix = new RowMatrix(vectors) val matrixSummary = matrix.computeColumnSummaryStatistics()//计算特征矩阵每列的统计数据 println(matrixSummary.mean) println(matrixSummary.min) println(matrixSummary.max) println(matrixSummary.variance) println(matrixSummary.numNonzeros)
特征标准化
import org.apache.spark.mllib.feature.StandardScaler val scaler = new StandardScaler(withMean = true, withStd = true).fit(vectors)//withMean和withStd设为True val scaledData = data.map(lp => LabeledPoint(lp.label, scaler.transform(lp.features)))//标准化后的数据 println(scaleData.first.features)
重新训练模型
val lrModelScaled = LogisticRegressionWithSGD.train(scaledData, numIterations)
val lrTotalCorrectScaled = scaledData.map { point =>
if (lrModelScaled.predict(point.features) == point.label) 1 else 0
}.sum
val lrAccuracyScaled = lrTotalCorrectScaled / numData
// lrAccuracyScaled: Double = 0.6204192021636241
val lrPredictionsVsTrue = scaledData.map { point =>
(lrModelScaled.predict(point.features), point.label)
}
val lrMetricsScaled = new BinaryClassificationMetrics(lrPredictionsVsTrue)
val lrPr = lrMetricsScaled.areaUnderPR
val lrRoc = lrMetricsScaled.areaUnderROC
println(f"${lrModelScaled.getClass.getSimpleName}\nAccuracy: ${lrAccuracyScaled * 100}%2.4f%%\nArea under PR: ${lrPr * 100.0}%2.4f%%\nArea under ROC: ${lrRoc * 100.0}%2.4f%%")
/*
LogisticRegressionModel
Accuracy: 62.0419%
Area under PR: 72.7254%
Area under ROC: 61.9663%
*//简单的对特征标准化,提高了准确率
考虑其他特征,未使用category 和boilerplate 列的内容
添加category,对每个类别做一个索引,可以用1-of-k编码。
val categories = records.map(r => r(3)).distinct.collect.zipWithIndex.toMap
// categories: scala.collection.immutable.Map[String,Int] = Map("weather" -> 0, "sports" -> 6,
// "unknown" -> 4, "computer_internet" -> 12, "?" -> 11, "culture_politics" -> 3, "religion" -> 8,
// "recreation" -> 2, "arts_entertainment" -> 9, "health" -> 5, "law_crime" -> 10, "gaming" -> 13,
// "business" -> 1, "science_technology" -> 7)
val numCategories = categories.size
// numCategories: Int = 14
val dataCategories = records.map { r =>
val trimmed = r.map(_.replaceAll("\"", ""))
val label = trimmed(r.size - 1).toInt
val categoryIdx = categories(r(3))
val categoryFeatures = Array.ofDim[Double](numCategories)
categoryFeatures(categoryIdx) = 1.0
val otherFeatures = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble)
val features = categoryFeatures ++ otherFeatures
LabeledPoint(label, Vectors.dense(features))
}
println(dataCategories.first)
// LabeledPoint(0.0, [0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.789131,2.055555556, // 0.676470588,0.205882353,0.047058824,0.023529412,0.443783175,0.0,0.0,0.09077381,0.0,0.245831182, // 0.003883495,1.0,1.0,24.0,0.0,5424.0,170.0,8.0,0.152941176,0.079129575])
标准化
val scalerCats = new StandardScaler(withMean = true, withStd = true).fit(dataCategories.map(lp => lp.features)) val scaledDataCats = dataCategories.map(lp => LabeledPoint(lp.label, scalerCats.transform(lp.features))) println(scaledDataCats.first.features) /* [-0.023261105535492967,2.720728254208072,-0.4464200056407091,-0.2205258360869135,-0.028492999745483565, -0.2709979963915644,-0.23272692307249684,-0.20165301179556835,-0.09914890962355712,-0.381812077600508, -0.06487656833429316,-0.6807513271391559,-0.2041811690290381,-0.10189368073492189,1.1376439023494747, -0.08193556218743517,1.0251347662842047,-0.0558631837375738,-0.4688883677664047,-0.35430044806743044 ,-0.3175351615705111,0.3384496941616097,0.0,0.8288021759842215,-0.14726792180045598,0.22963544844991393, -0.14162589530918376,0.7902364255801262,0.7171932152231301,-0.29799680188379124,-0.20346153667348232, -0.03296720969318916,-0.0487811294839849,0.9400696843533806,-0.10869789547344721,-0.2788172632659348] */
再次训练模型
val lrModelScaledCats = LogisticRegressionWithSGD.train(scaledDataCats, numIterations)
val lrTotalCorrectScaledCats = scaledDataCats.map { point =>
if (lrModelScaledCats.predict(point.features) == point.label) 1 else 0
}.sum
val lrAccuracyScaledCats = lrTotalCorrectScaledCats / numData
val lrPredictionsVsTrueCats = scaledDataCats.map { point =>
(lrModelScaledCats.predict(point.features), point.label)
}
val lrMetricsScaledCats = new BinaryClassificationMetrics(lrPredictionsVsTrueCats)
val lrPrCats = lrMetricsScaledCats.areaUnderPR
val lrRocCats = lrMetricsScaledCats.areaUnderROC
println(f"${lrModelScaledCats.getClass.getSimpleName}\nAccuracy: ${lrAccuracyScaledCats * 100}%2.4f%%\nArea under PR: ${lrPrCats * 100.0}%2.4f%%\nArea under ROC: ${lrRocCats * 100.0}%2.4f%%")
/*
LogisticRegressionModel
Accuracy: 66.5720%
Area under PR: 75.7964%
Area under ROC: 66.5483%
*///准确率有所提升
模型参数调优
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.optimization.Updater
import org.apache.spark.mllib.optimization.SimpleUpdater
import org.apache.spark.mllib.optimization.L1Updater
import org.apache.spark.mllib.optimization.SquaredL2Updater
import org.apache.spark.mllib.classification.ClassificationModel
// 辅助函数,根据给定数据输入模型
def trainWithParams(input: RDD[LabeledPoint], regParam: Double, numIterations: Int, updater: Updater, stepSize: Double) = {
val lr = new LogisticRegressionWithSGD
lr.optimizer.setNumIterations(numIterations).setUpdater(updater).setRegParam(regParam).setStepSize(stepSize)
lr.run(input)
}
// 辅助函数,根据输入数据和分类模型,计算AUC
def createMetrics(label: String, data: RDD[LabeledPoint], model: ClassificationModel) = {
val scoreAndLabels = data.map { point =>
(model.predict(point.features), point.label)
}
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
(label, metrics.areaUnderROC)
}
缓存数据
scaledDataCats.cache
设置不同迭代次数
val iterResults = Seq(1, 5, 10, 50).map { param =>
val model = trainWithParams(scaledDataCats, 0.0, param, new SimpleUpdater, 1.0)
createMetrics(s"$param iterations", scaledDataCats, model)
}
iterResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }
/*
1 iterations, AUC = 64.97%
5 iterations, AUC = 66.62%
10 iterations, AUC = 66.55%
50 iterations, AUC = 66.81%//达到某个次数,结果影响变小
*/
设置不同步长
val stepResults = Seq(0.001, 0.01, 0.1, 1.0, 10.0).map { param =>
val model = trainWithParams(scaledDataCats, 0.0, numIterations, new SimpleUpdater, param)
createMetrics(s"$param step size", scaledDataCats, model)
}
stepResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }
/*
0.001 step size, AUC = 64.95%
0.01 step size, AUC = 65.00%
0.1 step size, AUC = 65.52%
1.0 step size, AUC = 66.55%
10.0 step size, AUC = 61.92%//步长过大反而更不准确
*/
正则化,不同的正则参数
val regResults = Seq(0.001, 0.01, 0.1, 1.0, 10.0).map { param =>
val model = trainWithParams(scaledDataCats, param, numIterations, new SquaredL2Updater, 1.0)
createMetrics(s"$param L2 regularization parameter", scaledDataCats, model)
}
regResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }
/*
0.001 L2 regularization parameter, AUC = 66.55%
0.01 L2 regularization parameter, AUC = 66.55%
0.1 L2 regularization parameter, AUC = 66.63%
1.0 L2 regularization parameter, AUC = 66.04%
10.0 L2 regularization parameter, AUC = 35.33%//采用L2正则化
*/
交叉验证
val trainTestSplit = scaledDataCats.randomSplit(Array(0.6, 0.4), 123)//六四分 val train = trainTestSplit(0) val test = trainTestSplit(1)
调整正则化参数
val regResultsTest = Seq(0.0, 0.001, 0.0025, 0.005, 0.01).map { param =>
val model = trainWithParams(train, param, numIterations, new SquaredL2Updater, 1.0)
createMetrics(s"$param L2 regularization parameter", test, model)
}
regResultsTest.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.6f%%") }
/*
0.0 L2 regularization parameter, AUC = 66.480874%
0.001 L2 regularization parameter, AUC = 66.480874%
0.0025 L2 regularization parameter, AUC = 66.515027%
0.005 L2 regularization parameter, AUC = 66.515027%
0.01 L2 regularization parameter, AUC = 66.549180%
*/
再计算测试集
val regResultsTrain = Seq(0.0, 0.001, 0.0025, 0.005, 0.01).map { param =>
val model = trainWithParams(train, param, numIterations, new SquaredL2Updater, 1.0)
createMetrics(s"$param L2 regularization parameter", train, model)
}
regResultsTrain.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.6f%%") }
/*
0.0 L2 regularization parameter, AUC = 66.260311%
0.001 L2 regularization parameter, AUC = 66.260311%
0.0025 L2 regularization parameter, AUC = 66.260311%
0.005 L2 regularization parameter, AUC = 66.238294%
0.01 L2 regularization parameter, AUC = 66.238294%
*/
正则化参数较小,效果较好,但容易过拟合。
交叉验证中,一般选择测试集中表现最好的参数。然后进行新数据集的预测。
浙公网安备 33010602011771号