Unity Standard Shader代码

下载Unity官方的提供的Shader资源,里面有个文件叫Standar.shader 就是Unity5.0的之后的用的基于BDRF的shader源代码。

里面包含的多个SubShader 和Pass 这里我们挑 Shader2.0 和 ForwardBase Pass 具体Shader2.0 和ForwardBase Pass 后面文章说。

File:Standard.shader

Pass
        {
            Name "FORWARD"
            Tags { "LightMode" = "ForwardBase" }

            Blend [_SrcBlend] [_DstBlend]
            ZWrite [_ZWrite]

            CGPROGRAM
            #pragma target 2.0

            #pragma shader_feature _NORMALMAP
            #pragma shader_feature _ _ALPHATEST_ON _ALPHABLEND_ON _ALPHAPREMULTIPLY_ON
            #pragma shader_feature _EMISSION
            #pragma shader_feature _METALLICGLOSSMAP
            #pragma shader_feature _ _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
            #pragma shader_feature _ _SPECULARHIGHLIGHTS_OFF
            #pragma shader_feature _ _GLOSSYREFLECTIONS_OFF
            // SM2.0: NOT SUPPORTED shader_feature ___ _DETAIL_MULX2
            // SM2.0: NOT SUPPORTED shader_feature _PARALLAXMAP

            #pragma skip_variants SHADOWS_SOFT DIRLIGHTMAP_COMBINED

            #pragma multi_compile_fwdbase
            #pragma multi_compile_fog

            #pragma vertex vertBase
            #pragma fragment fragBase
            #include "UnityStandardCoreForward.cginc"

            ENDCG
        }

这里看到,代码里面 

  #pragma vertex vertBase
  #pragma fragment fragBase

可以看到顶点着色器和像素着色器
File:UnityStandardCoreForward.cginc
#if UNITY_STANDARD_SIMPLE
    #include "UnityStandardCoreForwardSimple.cginc"
    VertexOutputBaseSimple vertBase (VertexInput v) { return vertForwardBaseSimple(v); }
    VertexOutputForwardAddSimple vertAdd (VertexInput v) { return vertForwardAddSimple(v); }
    half4 fragBase (VertexOutputBaseSimple i) : SV_Target { return fragForwardBaseSimpleInternal(i); }
    half4 fragAdd (VertexOutputForwardAddSimple i) : SV_Target { return fragForwardAddSimpleInternal(i); }
#else
    #include "UnityStandardCore.cginc"
    VertexOutputForwardBase vertBase (VertexInput v) { return vertForwardBase(v); }
    VertexOutputForwardAdd vertAdd (VertexInput v) { return vertForwardAdd(v); }
    half4 fragBase (VertexOutputForwardBase i) : SV_Target { return fragForwardBaseInternal(i); }
    half4 fragAdd (VertexOutputForwardAdd i) : SV_Target { return fragForwardAddInternal(i); }
#endif

这里分为两个分支,简单的和标准,我们这里看标准的。

 VertexOutputForwardBase vertBase (VertexInput v) { return vertForwardBase(v); }
 half4 fragBase (VertexOutputForwardBase i) : SV_Target { return fragForwardBaseInternal(i); }
File:UnityStandardCore.cginc

VertexOutputForwardBase vertForwardBase (VertexInput v)
{
    UNITY_SETUP_INSTANCE_ID(v);
    VertexOutputForwardBase o;
    UNITY_INITIALIZE_OUTPUT(VertexOutputForwardBase, o);
    UNITY_TRANSFER_INSTANCE_ID(v, o);
    UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);

    float4 posWorld = mul(unity_ObjectToWorld, v.vertex);
    #if UNITY_REQUIRE_FRAG_WORLDPOS
        #if UNITY_PACK_WORLDPOS_WITH_TANGENT
            o.tangentToWorldAndPackedData[0].w = posWorld.x;
            o.tangentToWorldAndPackedData[1].w = posWorld.y;
            o.tangentToWorldAndPackedData[2].w = posWorld.z;
        #else
            o.posWorld = posWorld.xyz;
        #endif
    #endif
    o.pos = UnityObjectToClipPos(v.vertex);

    o.tex = TexCoords(v);
    o.eyeVec = NormalizePerVertexNormal(posWorld.xyz - _WorldSpaceCameraPos);
    float3 normalWorld = UnityObjectToWorldNormal(v.normal);
    #ifdef _TANGENT_TO_WORLD
        float4 tangentWorld = float4(UnityObjectToWorldDir(v.tangent.xyz), v.tangent.w);

        float3x3 tangentToWorld = CreateTangentToWorldPerVertex(normalWorld, tangentWorld.xyz, tangentWorld.w);
        o.tangentToWorldAndPackedData[0].xyz = tangentToWorld[0];
        o.tangentToWorldAndPackedData[1].xyz = tangentToWorld[1];
        o.tangentToWorldAndPackedData[2].xyz = tangentToWorld[2];
    #else
        o.tangentToWorldAndPackedData[0].xyz = 0;
        o.tangentToWorldAndPackedData[1].xyz = 0;
        o.tangentToWorldAndPackedData[2].xyz = normalWorld;
    #endif

    //We need this for shadow receving
    UNITY_TRANSFER_SHADOW(o, v.uv1);

    o.ambientOrLightmapUV = VertexGIForward(v, posWorld, normalWorld);

    #ifdef _PARALLAXMAP
        TANGENT_SPACE_ROTATION;
        half3 viewDirForParallax = mul (rotation, ObjSpaceViewDir(v.vertex));
        o.tangentToWorldAndPackedData[0].w = viewDirForParallax.x;
        o.tangentToWorldAndPackedData[1].w = viewDirForParallax.y;
        o.tangentToWorldAndPackedData[2].w = viewDirForParallax.z;
    #endif

    UNITY_TRANSFER_FOG(o,o.pos);
    return o;
}

 

half4 fragForwardBaseInternal (VertexOutputForwardBase i)
{
    UNITY_APPLY_DITHER_CROSSFADE(i.pos.xy);

    FRAGMENT_SETUP(s)

    UNITY_SETUP_INSTANCE_ID(i);
    UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(i);

    UnityLight mainLight = MainLight ();
    UNITY_LIGHT_ATTENUATION(atten, i, s.posWorld);

    half occlusion = Occlusion(i.tex.xy);
    UnityGI gi = FragmentGI (s, occlusion, i.ambientOrLightmapUV, atten, mainLight);

    half4 c = UNITY_BRDF_PBS (s.diffColor, s.specColor, s.oneMinusReflectivity, s.smoothness, s.normalWorld, -s.eyeVec, gi.light, gi.indirect);
    c.rgb += Emission(i.tex.xy);

    UNITY_APPLY_FOG(i.fogCoord, c.rgb);
    return OutputForward (c, s.alpha);
}

像素着色器中UNITY_BRDF_PBS 这个函数有三挡的分支

File:UnityPBSLighting.cginc

// Default BRDF to use:
#if !defined (UNITY_BRDF_PBS) // allow to explicitly override BRDF in custom shader
    // still add safe net for low shader models, otherwise we might end up with shaders failing to compile
    #if SHADER_TARGET < 30
        #define UNITY_BRDF_PBS BRDF3_Unity_PBS
    #elif defined(UNITY_PBS_USE_BRDF3)
        #define UNITY_BRDF_PBS BRDF3_Unity_PBS
    #elif defined(UNITY_PBS_USE_BRDF2)
        #define UNITY_BRDF_PBS BRDF2_Unity_PBS
    #elif defined(UNITY_PBS_USE_BRDF1)
        #define UNITY_BRDF_PBS BRDF1_Unity_PBS
    #elif defined(SHADER_TARGET_SURFACE_ANALYSIS)
        // we do preprocess pass during shader analysis and we dont actually care about brdf as we need only inputs/outputs
        #define UNITY_BRDF_PBS BRDF1_Unity_PBS
    #else
        #error something broke in auto-choosing BRDF
    #endif
#endif

我们看完全体的 

 UNITY_BRDF_PBS BRDF1_Unity_PBS 函数 在文件 UnityStandardBRDF.cginc中

File:UnityStandardBRDF.cginc
half4 BRDF1_Unity_PBS (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,
    half3 normal, half3 viewDir,
    UnityLight light, UnityIndirect gi)
{
    half perceptualRoughness = SmoothnessToPerceptualRoughness (smoothness);
    half3 halfDir = Unity_SafeNormalize (light.dir + viewDir);

// NdotV should not be negative for visible pixels, but it can happen due to perspective projection and normal mapping
// In this case normal should be modified to become valid (i.e facing camera) and not cause weird artifacts.
// but this operation adds few ALU and users may not want it. Alternative is to simply take the abs of NdotV (less correct but works too).
// Following define allow to control this. Set it to 0 if ALU is critical on your platform.
// This correction is interesting for GGX with SmithJoint visibility function because artifacts are more visible in this case due to highlight edge of rough surface
// Edit: Disable this code by default for now as it is not compatible with two sided lighting used in SpeedTree.
#define UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV 0

#if UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV
    // The amount we shift the normal toward the view vector is defined by the dot product.
    half shiftAmount = dot(normal, viewDir);
    normal = shiftAmount < 0.0f ? normal + viewDir * (-shiftAmount + 1e-5f) : normal;
    // A re-normalization should be applied here but as the shift is small we don't do it to save ALU.
    //normal = normalize(normal);

    half nv = saturate(dot(normal, viewDir)); // TODO: this saturate should no be necessary here
#else
    half nv = abs(dot(normal, viewDir));    // This abs allow to limit artifact
#endif

    half nl = saturate(dot(normal, light.dir));
    half nh = saturate(dot(normal, halfDir));

    half lv = saturate(dot(light.dir, viewDir));
    half lh = saturate(dot(light.dir, halfDir));

    // Diffuse term
    half diffuseTerm = DisneyDiffuse(nv, nl, lh, perceptualRoughness) * nl;

    // Specular term
    // HACK: theoretically we should divide diffuseTerm by Pi and not multiply specularTerm!
    // BUT 1) that will make shader look significantly darker than Legacy ones
    // and 2) on engine side "Non-important" lights have to be divided by Pi too in cases when they are injected into ambient SH
    half roughness = PerceptualRoughnessToRoughness(perceptualRoughness);
#if UNITY_BRDF_GGX
    // GGX with roughtness to 0 would mean no specular at all, using max(roughness, 0.002) here to match HDrenderloop roughtness remapping.
    roughness = max(roughness, 0.002);
    half V = SmithJointGGXVisibilityTerm (nl, nv, roughness);
    half D = GGXTerm (nh, roughness);
#else
    // Legacy
    half V = SmithBeckmannVisibilityTerm (nl, nv, roughness);
    half D = NDFBlinnPhongNormalizedTerm (nh, PerceptualRoughnessToSpecPower(perceptualRoughness));
#endif

    half specularTerm = V*D * UNITY_PI; // Torrance-Sparrow model, Fresnel is applied later

#   ifdef UNITY_COLORSPACE_GAMMA
        specularTerm = sqrt(max(1e-4h, specularTerm));
#   endif

    // specularTerm * nl can be NaN on Metal in some cases, use max() to make sure it's a sane value
    specularTerm = max(0, specularTerm * nl);
#if defined(_SPECULARHIGHLIGHTS_OFF)
    specularTerm = 0.0;
#endif

    // surfaceReduction = Int D(NdotH) * NdotH * Id(NdotL>0) dH = 1/(roughness^2+1)
    half surfaceReduction;
#   ifdef UNITY_COLORSPACE_GAMMA
        surfaceReduction = 1.0-0.28*roughness*perceptualRoughness;      // 1-0.28*x^3 as approximation for (1/(x^4+1))^(1/2.2) on the domain [0;1]
#   else
        surfaceReduction = 1.0 / (roughness*roughness + 1.0);           // fade \in [0.5;1]
#   endif

    // To provide true Lambert lighting, we need to be able to kill specular completely.
    specularTerm *= any(specColor) ? 1.0 : 0.0;

    half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));
    half3 color =   diffColor * (gi.diffuse + light.color * diffuseTerm)
                    + specularTerm * light.color * FresnelTerm (specColor, lh)
                    + surfaceReduction * gi.specular * FresnelLerp (specColor, grazingTerm, nv);

    return half4(color, 1);
}

 



posted @ 2018-04-24 16:48  BaoqingWu  阅读(3950)  评论(0编辑  收藏  举报