随笔分类 -  深度学习

上一页 1 ··· 4 5 6 7 8 9 下一页
摘要:Hybrid computing using a neural network with dynamic external memory Nature 2016 updated on 2018-07-21 15:30:31 Paper:http://www.nature.com/nature/jou 阅读全文
posted @ 2016-10-14 13:15 AHU-WangXiao 阅读(2923) 评论(0) 推荐(0)
摘要:关于 Graph Convolutional Networks 资料收集 Updated on 2018-08-07 10:11:09 The blog collect some related files on graph convolutional network, including: Blo 阅读全文
posted @ 2016-10-13 16:27 AHU-WangXiao 阅读(1492) 评论(0) 推荐(0)
摘要:深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chenxiaoqing、范娜Fiona、杨超、微胖、汪汪、赵巍 导读:这是《神经网络和深度学习简史》第一部 阅读全文
posted @ 2016-10-10 00:29 AHU-WangXiao 阅读(662) 评论(0) 推荐(0)
摘要:HOME ABOUT CONTACT SUBSCRIBE VIA RSS HOME ABOUT CONTACT SUBSCRIBE VIA RSS HOME ABOUT CONTACT SUBSCRIBE VIA RSS HOME ABOUT CONTACT SUBSCRIBE VIA RSS HO 阅读全文
posted @ 2016-10-10 00:27 AHU-WangXiao 阅读(1434) 评论(0) 推荐(0)
摘要:FastML Machine learning made easy RSS Home Contents Popular Links Backgrounds About Deep learning architecture diagrams 2016-09-30 Like a wild stream 阅读全文
posted @ 2016-10-01 21:29 AHU-WangXiao 阅读(1202) 评论(0) 推荐(0)
摘要:关于 Local feature 和 Global feature 的组合 1.全局上下文建模: 阅读全文
posted @ 2016-09-21 20:55 AHU-WangXiao 阅读(747) 评论(0) 推荐(0)
该文被密码保护。
posted @ 2016-09-18 11:16 AHU-WangXiao 阅读(16) 评论(0) 推荐(0)
摘要:Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company called Facebook? Yeah, the one that has 1.6 billion 阅读全文
posted @ 2016-09-04 00:19 AHU-WangXiao 阅读(397) 评论(0) 推荐(0)
该文被密码保护。
posted @ 2016-09-01 15:10 AHU-WangXiao 阅读(7) 评论(0) 推荐(0)
摘要:本文转自:http://www.cosmosshadow.com/ml/%E5%BA%94%E7%94%A8/2015/12/07/%E7%89%A9%E4%BD%93%E6%A3%80%E6%B5%8B.html 物体检测 Index RCNN Fast RCNN Faster RCNN R-FC 阅读全文
posted @ 2016-08-31 23:42 AHU-WangXiao 阅读(3365) 评论(0) 推荐(0)
摘要:Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We have pages for other topics: awesome-rnn, awesome-d 阅读全文
posted @ 2016-08-16 23:12 AHU-WangXiao 阅读(860) 评论(0) 推荐(0)
该文被密码保护。
posted @ 2016-08-13 15:49 AHU-WangXiao 阅读(3) 评论(0) 推荐(0)
摘要:Playing for Data: Ground Truth from Computer Games ECCV 2016 Project Page:http://download.visinf.tu-darmstadt.de/data/from_games/index.html arXiv Pape 阅读全文
posted @ 2016-08-10 01:33 AHU-WangXiao 阅读(2093) 评论(0) 推荐(0)
摘要:Generative Adversarial Nets NIPS 2014 摘要:本文通过对抗过程,提出了一种新的框架来预测产生式模型,我们同时训练两个模型:一个产生式模型 G,该模型可以抓住数据分布;还有一个判别式模型 D 可以预测来自训练样本 而不是 G 的样本的概率.训练 G 的目的是让 D 阅读全文
posted @ 2016-08-06 21:49 AHU-WangXiao 阅读(12320) 评论(6) 推荐(0)
摘要:Adit Deshpande CS Undergrad at UCLA ('19) Blog About Adit Deshpande CS Undergrad at UCLA ('19) Blog About Adit Deshpande CS Undergrad at UCLA ('19) Ad 阅读全文
posted @ 2016-08-04 22:50 AHU-WangXiao 阅读(354) 评论(0) 推荐(0)
摘要:R2RT R2RT Written Memories: Understanding, Deriving and Extending the LSTM Tue 26 July 2016 When I was first introduced to Long Short-Term Memory netw 阅读全文
posted @ 2016-08-04 22:47 AHU-WangXiao 阅读(553) 评论(1) 推荐(0)
摘要:3D CNN for Video Processing Updated on 2018-08-06 19:53:57 本文主要是总结下当前流行的处理 Video 信息的深度神经网络的处理方法. 参考文献: 1. 3D Convolutional Neural Networks for Human A 阅读全文
posted @ 2016-08-03 21:05 AHU-WangXiao 阅读(3241) 评论(0) 推荐(0)
摘要:[译] AlphaGo 的确是一个大事件 转自:http://www.jianshu.com/p/157a15de47df 字数3797 阅读696 评论0 喜欢4 作者:Michael Nielsen,源地址:https://www.quantamagazine.org/20160329-why- 阅读全文
posted @ 2016-08-01 00:47 AHU-WangXiao 阅读(364) 评论(0) 推荐(0)
该文被密码保护。
posted @ 2016-07-29 14:33 AHU-WangXiao 阅读(2) 评论(0) 推荐(0)
摘要:如何才能将Faster R-CNN训练起来? 首先进入 Faster RCNN 的官网啦,即:https://github.com/rbgirshick/py-faster-rcnn#installation-sufficient-for-the-demo 先用提供的 model 自己测试一下效果嘛 阅读全文
posted @ 2016-07-29 08:41 AHU-WangXiao 阅读(23114) 评论(12) 推荐(0)

上一页 1 ··· 4 5 6 7 8 9 下一页