摘要:
参考:https://blog.csdn.net/qq_41368247/article/details/86626446 使用前提:stride > 1 补充:same卷积操作 是通过padding使得卷积之后输出的特征图大小保持不变(相对于输入特征图),不代表得到的输出特征图的大小与输入特征图的 阅读全文
posted @ 2019-04-29 17:31
慢行厚积
阅读(16667)
评论(1)
推荐(2)
摘要:
1.首先先定义进行卷积的参数: 输入特征图为高宽一样的Hin*Hin大小的x 卷积核大小kernel_size 步长stride padding填充数(填充0) 输出特征图为Hout*Hout大小的y 计算式子为: Hout = floor( Hin + 2*padding - kernel_siz 阅读全文
posted @ 2019-04-29 16:45
慢行厚积
阅读(40690)
评论(3)
推荐(9)

浙公网安备 33010602011771号