[KaibaMath]1032 基于换元法解一道一元一次方程
解方程:(x-2)/2025 + (x-1)/2026 + (3-x)/1012 = 0.

下面给出相应的LaTex.
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 % A Simple Proof Template 3 % Compiler: pdfLaTeX or XeLaTeX 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5 6 \documentclass[11pt, a4paper]{amsart} 7 8 % =================================================================== 9 % PREAMBLE - PACKAGES AND SETUP 10 % =================================================================== 11 12 % --- Core Math Packages (amsart loads some, but we add others) --- 13 \usepackage{amsmath} 14 \usepackage{amssymb} 15 16 % --- Visual Enhancement and Cross-Referencing --- 17 \usepackage{tcolorbox} 18 \usepackage{hyperref} 19 \usepackage{cleveref} 20 21 % --- Load tcolorbox libraries for theorem environments --- 22 \tcbuselibrary{theorems, skins, breakable} 23 24 % --- Hyperref setup for clean links --- 25 \hypersetup{ 26 colorlinks=true, 27 linkcolor=blue, 28 filecolor=magenta, 29 urlcolor=cyan, 30 citecolor=red, 31 } 32 33 % =================================================================== 34 % CUSTOM ENVIRONMENTS AND COMMANDS 35 % =================================================================== 36 37 % --- Define a custom "Example" environment for problems --- 38 \newtcbtheorem[number within=section]{example}{Problem}% 39 {colback=cyan!5!white,colframe=pink!75!black,fonttitle=\bfseries}{ex} 40 41 % --- Custom Math Commands --- 42 \newcommand{\R}{\mathbb{R}} 43 \newcommand{\N}{\mathbb{N}} 44 \newcommand{\Z}{\mathbb{Z}} 45 \newcommand{\Q}{\mathbb{Q}} 46 47 % =================================================================== 48 % DOCUMENT INFORMATION 49 % =================================================================== 50 51 \title{Solving a Linear Equation by Substitution} 52 \author{Cyrus Li} 53 \date{December 7, 2025} 54 55 % =================================================================== 56 % DOCUMENT BODY 57 % =================================================================== 58 59 \begin{document} 60 61 \maketitle 62 63 \section{Solving a Linear Equation} 64 65 \begin{example}{Solve the following equation}{ex:rational_eq} 66 \[ \frac{x-2}{2025} + \frac{x-1}{2026} + \frac{3-x}{1012} = 0 \] 67 \end{example} 68 69 \subsection{Solution} 70 71 Set \( \alpha = 2025 \) and let \( y = x - 2 \). Then \( x = y + 2 \). 72 73 \textbf{The original equation can be rewritten as:} 74 \[ \frac{y}{\alpha} + \frac{y+1}{\alpha + 1} + \frac{2(1-y)}{\alpha - 1} = 0 \] 75 76 \textbf{Multiplying both sides by the common denominator } 77 \[\alpha(\alpha+1)(\alpha-1)\] 78 \textbf{ gives:} 79 \begin{equation*} 80 \begin{split} 81 & y(\alpha+1)(\alpha-1) + (y+1)\alpha(\alpha-1) \\ 82 & \qquad + 2(1-y)\alpha(\alpha+1) = 0 83 \end{split} 84 \end{equation*} 85 86 \textbf{Expanding and combining like terms:} 87 \begin{equation*} 88 \begin{split} 89 & y(\alpha^2-1) + y(\alpha^2-\alpha) + (\alpha^2-\alpha) \\ 90 & \qquad + 2\alpha(\alpha+1) - 2y\alpha(\alpha+1) = 0 91 \end{split} 92 \end{equation*} 93 \[ y\left[ (\alpha^2-1) + (\alpha^2-\alpha) - 2(\alpha^2+\alpha) \right] + \left[ (\alpha^2-\alpha) + 2(\alpha^2+\alpha) \right] = 0 \] 94 \[ y(-1 - 3\alpha) + (3\alpha^2+\alpha) = 0 \] 95 \[ y(3\alpha+1) = 3\alpha^2+\alpha \] 96 \[ y(3\alpha+1) = \alpha(3\alpha+1) \] 97 \[ y = \alpha \] 98 99 \textbf{Therefore, we find } \( y = \alpha = 2025 \). 100 101 \textbf{Thus, } \( x = y + 2 \text{, that is:} \) 102 \[ x = 2025 + 2 \] 103 \[ x = 2027 \] \qed 104 105 \subsection{Conclusion} 106 A quick check confirms that \(x = 2027\) is a solution to the original equation. 107 108 \end{document}
通过Overleaf编译成pdf截图如下:


浙公网安备 33010602011771号