机器学习 | 强化学习(2) | 动态规划求解(Planning by Dynamic Programming)

动态规划求解(Planning by Dynamic Programming)

动态规划概论

  • 动态(Dynamic):序列性又或是时序性的问题部分
  • 规划(Programming):最优化一个程序(Program),i.e 一种策略
    • 线性规划(Linear Programming)

显然马尔科夫决策过程就符合动态规划的顺序

因为相信带伙对于DP都是懂哥了,这里就没记录多少东西

策略评价(Policy Evaluation)

  • 问题:评价一个给定的策略\(\pi\)
  • 解决:使用贝尔曼期望的一个状态进行迭代
  • \(v_1\rightarrow v_2\rightarrow \dots\rightarrow v_\pi\)
  • 同步状态更新
    • 对于每一代\(k+1\)
    • 一切状态\(s\in\mathcal{S}\)
    • \(v_k(s')\)更新\(v_{k+1}(s)\)
    • 其中\(s'\)\(s\)的后续节点
  • 后面会提到非同步的状态更新
  • \(v_\pi\)的收敛性也可以得到证明

由贝尔曼方程,我们得到:

\[\begin{align} v_{k+1}(s) & = \mathcal{\sum_{a\in A}\pi(a|s)\Bigg( R^a_s + \gamma\sum_{s'\in S} P ^ a_{ss'}v_k(s') \Bigg)}\\ v^{k+1} & = \mathcal{R ^ \pi + \gamma P ^ \pi v ^ k} \end{align} \]

值得留意的是,上一节课谈到最优策略是固定的,为此我们的\(\pi\)是对某一个最优动作的选择,即\(\pi(a|s)\)本质上是退化类似于\([0 \ 0 \ 1 \ 0 \ 0\dots]\)的分布,或者说指定一个\(s\),可以用一个数字来表示\(\pi(a|s)\)

[这里是习题/样例]

策略迭代(Policy Iteration)

  • 给定策略\(\pi\)

    • 评价策略\(\pi\)

    • \[v_\pi(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots|S_t = s] \]

    • 通过过贪心算法改进策略

    • \[\pi' = greedy(s_\pi) \]

  • 最终经过改进的策略乃是最优的,\(\pi'=\pi^*\)

  • 一般来说,多轮的迭代是必要的

  • 策略迭代必定收敛于\(\pi^*\)

[这里是样例,习题]

  • 对于一个确定的策略,\(a = \pi(s)\)

  • 我们通过贪心算法改进策略

    \[\pi'(s) = \mathop{argmax}_{a\in A} q_\pi(s,a) \]

  • 每一步从每一个状态去更新价值函数

    \[q_\pi(s, \pi'(s)) = \max_{a \in A} q_\pi(s,a)\ge q_\pi(s,\pi(s))=v_\pi(s) \]

  • 因此去更新状态-价值函数,\(v_{\pi'}(s)\ge v_\pi(s)\)

    \[\begin{align} v_\pi(s) & \le q_\pi(s,\pi'(s)) = \mathbb{E}_{\pi'}[R_{t+1}+\gamma v_\pi(S_{t+1})|S_t = s] \\ & \le q_\pi(s,\pi'(s)) = \mathbb{E}_{\pi'}[R_{t+1}+\gamma q_\pi(S_{t+1},\pi'(S_{t+1})) |S_t = s]\\ & \le q_\pi(s,\pi'(s)) = \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} +\gamma^2 q_\pi(S_{t+1},\pi'(S_{t+1})) |S_t = s] \\ & \le q_\pi(s,\pi'(s)) = \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} +\dots |S_t = s] \\ & = v_{\pi'}(s) \end{align} \]

  • 若迭代没有进一步改进,即:

    \[q_\pi(s,\pi'(s)) = \max_{a\in A} q_\pi(s,a) = q_\pi(s,\pi(s))=v_\pi(s) \]

  • 那么贝尔曼最优方程即得解:

    \[v_\pi(s)=\max_{a\in A}q_\pi(s,a) \]

  • 因此\(v_\pi(s)=v_*(s),\forall s \in S\)

终止条件

  • 策略评价是否真的需要完全收敛于\(v_\pi\)呢?
  • 或者说我们是否可以人为地规定一个终止条件
    • e.g. 价值函数的\(\epsilon\)-收敛
  • 又或者\(k\)轮迭代之后即可终止
    • 例如说之前给出的gridworld样例中\(k=3\)的情况中就已经是最优策略了
  • 为何不一次迭代就全部更新策略
    • i.e. 第一代就停止更新了
    • P.S. 本质上是价值递归(Value Iteration),下面章节会讲的

价值迭代(Value Iteration)

对于任何一个最优策略都可以划分为以下两个部分

  • 最优动作\(A_*\)
  • 最优策略下跟随的下一个后继状态\(S'\)

最优化原理:

当一个策略\(\pi(a|s)\)从状态\(s\)出发达到最优价值,即\(v_\pi(s)=v_*(s)\)

有且仅有:

  • 对于所有能够从状态\(s\)转移到的状态\(s'\)
  • \(\pi\)\(s'\)出发也得到了达到最优价值,即\(v_\pi(s')=v_*(s')\)

因此

  • 如果我们能求解子问题\(s_*(s')\)

  • 那么\(v_*(s)\)的解只需要向前一步就能解出来

    \[v_*(s) \leftarrow \mathcal{\max_{a\in A} R^a_s + \gamma \sum_{s'\in S}P^a_{ss'}v_*(s')} \]

  • 此处就是价值迭代的核心思想:利用这个公式迭代更新公式

  • 原理阐释:从最终的回报开始进行反向传播

  • 对于循环、随机的马尔科夫决策过程同样适用

算法原理:

  • 问题:寻找最优策略\(\pi\)

  • 解决方案:迭代利用贝尔曼最优备份方案

  • \(v_1\rightarrow v_2\rightarrow\dots\rightarrow v_*\)

  • 采用同步备份更新

    • 对于每一代\(k+1\)
    • 一切状态\(s\in S\)
    • \(v_k(s')\)更新\(v_{k+1}(s)\)
  • \(v_*\)的收敛后面会证明

  • 相对于策略迭代,并不显式输出一个策略

  • 中间状态的价值函数并不表示任何有意义的策略

公式原理:

\[v_{k+1}(s) = \mathcal{\max_{a\in A}\Bigg( R^a_s + \gamma\sum_{s'\in S}P^a_{ss'} v_k(s')\Bigg)} \]

矩阵形式:

\[v_{k+1} = \mathcal{\max_{a\in A} R^a + \gamma P^a v_k} \]

一个demo

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

总结概要

问题 贝尔曼方程 算法
预测问题 贝尔曼期望方程 迭代策略评价
决策问题 贝尔曼期望方程+贪心算法策略提升 策略迭代
决策问题 贝尔曼最优方程 价值迭代
  • 基于状态-价值函数\(V_pi(s)\)或者是\(s_*(s)\)的算法
  • 时间复杂度:每一代\(O(mn^2)\),其中\(m\)为动作、\(n\)为状态
  • 基于动作-价值函数\(q_\pi(s,a)\)或者是\(q_*(s,a)\)
  • 时间复杂度:每一代\(O(m^2 n^2)\)

动态规划的拓展

  • 目前用到的DP都是同步备份更新的
  • 而异步更新DP则通过某种顺序独立更新每一个状态
  • 对于每一个选定的状态采取最适合的备份进行更新
  • 能够显著地减少计算的消耗
  • 若所有状态一直被选中则确保收敛了

三种异步动态规划的简单思想

  • 原地DP
  • 优先扫描
  • 实时DP

原地DP

一般来说,价值迭代都会存储着两份价值函数的拷贝

\[v_{new}(s) \leftarrow \mathcal{ \max_{a\in A} \Bigg( R^a_s + \gamma\sum_{s'\in S}P^a_{sss}v_{old}(s') \Bigg)} \]

其中\(v_{old}\)\(v_{new}\)之间就是两个备份

而原地DP则只存储一份价值函数的备份:

\[v(s) \leftarrow \mathcal{ \max_{a\in A} \Bigg( R^a_s + \gamma\sum_{s'\in S}P^a_{sss}v(s') \Bigg)} \]

直接就使用最新的\(v(s')\),因为包含更多信息,但是难点在于如何安排更新顺序

一般会采取贝尔曼误差去选择要更新价值函数

\[\mathcal{\Bigg| \max_{a\in A} \Bigg(R^a_s + \gamma\sum_{s'\in S}P^a_{ss'}v(s') \Bigg) - v(s) \Bigg|} \]

  • DP利用全广度备份
  • 在中等规模问题相当有效
  • 但是在高维数据会显得低效
  • 通过邻接链表的形式可以改造DP
posted @ 2021-01-17 18:09  Uzuki  阅读(492)  评论(0编辑  收藏  举报