解三角方程

\[a\sin x+b\cos x=c \begin{equation*} \begin{cases} \sin x=\dfrac{ac\pm b\sqrt{a^2+b^2-c^2}}{a^2+b^2}\\\\ \cos x=\dfrac{bc\pm a\sqrt{a^2+b^2-c^2}}{a^2+b^2}\\\\ \tan x=\dfrac{ab\pm c\sqrt{a^2+b^2-c^2}}{c^2-a^2} \end{cases} \end{equation*} \]


  1. \(a\sin x+b\cos x=c\)
    \(a^2\sin^2x+b^2\cos^2x+2ab\sin x\cos x=c^2\)
    \((a^2-c^2)\sin^2x+(b^2-c^2)\cos^2x+2ab\sin x\cos x=0\)
    \((a^2-c^2)\tan^2x+(b^2-c^2)+2ab\tan x=0\)
    \((a^2-c^2)t^2+2abt+(b^2-c^2)=0\)
    \(\tan x=\dfrac{ab\pm c\sqrt{a^2+b^2-c^2}}{c^2-a^2}\)

  2. \(a\sin x+b\cos x=c\)
    \(a\sin x=c-b\cos x\)
    \(a^2\sin^2x=c^2+b^2\cos^2x-2bc\cos x\)
    \(a^2-a^2\cos^2x=c^2+b^2\cos^2x-2bc\cos x\)
    \((a^2+b^2)\cos^2x-2bc\cos x+(c^2-a^2)=0\)
    \((a^2+b^2)t^2-2bct+(c^2-a^2)=0\)
    \(\cos x=\dfrac{bc\pm a\sqrt{a^2+b^2-c^2}}{a^2+b^2}\)

  3. \(a\sin x+b\cos x=c\)
    \(b\cos x=c-a\sin x\)
    \(b^2cos^2x=c^2+a^2\sin^2x-2ac\sin x\)
    \(b^2-b^2\sin^2x=c^2+a^2\sin^2x-2ac\sin x\)
    \((a^2+b^2)\sin^2x-2ac\sin x+(c^2-b^2)=0\)
    \((a^2+b^2)t^2-2act+(c^2-b^2)=0\)
    \(\sin x=\dfrac{ac\pm b\sqrt{a^2+b^2-c^2}}{a^2+b^2}\)

posted on 2025-08-19 07:28  UXOD  阅读(29)  评论(0)    收藏  举报