Fourier Analysis and Nonlinear Partial Differential Equations 阅读笔记 (前置知识)

在进入对Littlewood-Paley理论的正式学习之前, 需要先了解一些基础的\(L^p\)空间的知识, 这又以实变函数论的课程为基础. 现在既然实变函数已经结课, 但\(L^p\)空间尚未开张, 就从周民强著《实变函数论》的第六章开始整理.

因为没有找到Markdown如何右对齐, 本系列中证明的开始与结束均用\(\blacklozenge\)作为标记.


\(L^p\)空间的定义与不等式

定义: \(L^p\)空间

\(f(x)\)\(E\subset\mathbb{R}^n\)上的可测函数, 记

\[\parallel f\parallel_p=(\int_E|f(x)|^pdx)^{\frac{1}{p}},\quad 0<p<+\infty \]

\(L^p(E)\)表示使\(\parallel f\parallel_p<+\infty\)\(f\)的全体, 称其为\(L^p\)空间.

定义: 本性有界, 本性上确界

\(f(x)\)\(E\subset\mathbb{R}^n\)上的可测函数, \(m(E)>0\). 若存在\(M\), 使得\(|f(x)|\le M\), a.e. \(x\in E\), 则称\(f(x)\)\(E\)本性有界, \(M\)称为\(f(x)\)本性上界. 再对一切本性上界取下确界, 记为\(\parallel f\parallel_{\infty}\), 称它为\(f(x)\)\(E\)上的本性上确界, 此时用\(L^{\infty}(E)\)表示在\(E\)上本性有界的函数的全体.

可以证明

\[\lim\limits_{p\rightarrow\infty}\parallel f\parallel_p=\parallel f\parallel_{\infty} \]

下述定理是一个基本事实.
定理: \(L^p\)空间是线性空间

\(f,g\in L^p(E),0<p\le+\infty\), \(\alpha,\beta\)是实数, 则

\[\alpha f+\beta g\in L^p(E). \]

现在引入共轭指标来介绍\(L^p\)空间中常用的不等式.

定义: 共轭指标

\(p,p'>1\), 且\(\frac{1}{p}+\frac{1}{p'}=1\), 则称\(p\)\(p'\)共轭指标(数). 若\(p=1\), 规定共轭指标\(p'=\infty\); 若\(p=\infty\), 则规定共轭指标\(p'=1\).

定理: Holder不等式

\(p\)\(p'\)为共轭指标, 若\(f\in L^p(E),g\in L^{p'}(E)\), 则

\[\parallel fg\parallel_1\le\parallel f\parallel_p\parallel g\parallel_{p'},\quad1\le p\le\infty, \]

\[\int_E|f(x)g(x)|dx\le(\int_E|f(x)|^pdx)^{\frac{1}{p}}(\int_E|g(x)|^{p'}dx)^{\frac{1}{p'}},\quad1<p<+\infty, \]

以及

\[\begin{gathered} \int_E|f(x)g(x)|dx\le\parallel g\parallel_{\infty}\int_E|f(x)|dx,\quad p=1,\\ \int_E|f(x)g(x)|dx\le\parallel f\parallel_{\infty}\int_E|g(x)|dx,\quad p'=1. \end{gathered}\]

\(\blacklozenge\)

\(p=1\)\(+\infty\)时不等式显然成立, 当\(\parallel f\parallel_p=0\)\(\parallel g\parallel_{p'}=0\)时, 出于\(f(x)g(x)=0\), a.e. \(x\in E\), 不等式也显然成立, 故下面讨论\(\parallel f\parallel_p>0,\parallel g\parallel_{p'}>0,p,p'<+\infty\)的情形.

考虑Young不等式:

\[a^{\frac{1}{p}}b^{\frac{1}{p'}}\le\frac{a}{p}+\frac{b}{p'},\quad a>0,b>0 \]

\[a=\frac{|f(x)|^p}{\parallel f\parallel_p^p},b=\frac{|g(x)|^{p'}}{\parallel g\parallel_{p'}^{p'}} \]

可知

\[\frac{|f(x)g(x)|}{\parallel f\parallel_p\parallel g\parallel_{p'}}\le\frac{1}{p}\frac{|f(x)|^p}{\parallel f\parallel_p^p}+\frac{1}{p'}\frac{|g(x)|^{p'}}{\parallel g\parallel_{p'}^{p'}} \]

上式两端积分有

\[\frac{\int_E|f(x)g(x)|dx}{\parallel f\parallel_p\parallel g\parallel_{p'}}\le\frac{1}{p}\frac{\int_E|f(x)|^pdx}{\parallel f\parallel_p^p}+\frac{1}{p'}\frac{\int_E|g(x)|^{p'}dx}{\parallel g\parallel_{p'}^{p'}}=\frac{1}{p}+\frac{1}{p'}=1 \]

即得

\[\parallel fg\parallel_1=\int_E|f(x)g(x)|dx\le\parallel f\parallel_p\parallel g\parallel_{p'} \]

\(\blacklozenge\)

定理: 反Holder不等式

\(0<p<1,q<0,\frac{1}{p}+\frac{1}{q}=1\), 则对\(f\in L^p(E),g\in L^q(E)\), 有

\[\int_E|f(x)g(x)|dx\ge\parallel f\parallel_p\cdot\parallel g\parallel_q \]

\(\blacklozenge\)

不妨设\(fg\in L(E)\), 取\(\overline{p}=\frac{1}{p}>1,\overline{q}=\frac{1}{1-p}>1\), 则\(\frac{1}{\overline{p}}+\frac{1}{\overline{q}}=1\), 且

\[\begin{aligned} \parallel f\parallel_p&=(\int_E|f(x)|^pdx)^{\frac{1}{p}}=(\int_E|f(x)g(x)|^p\cdot\frac{1}{|g(x)|^p}dx)^{\frac{1}{p}}\\ &\le((\int_E|f(x)g(x)|dx)^{p}\cdot(\int_E\frac{1}{|g(x)|^{\frac{p}{1-p}}}dx)^{1-p})^{\frac{1}{p}}\\ &=(\int_E|f(x)g(x)|dx)\cdot(\int_E\frac{1}{|g(x)|^{\frac{p}{1-p}}}dx)^{\frac{1-p}{p}}\\ &=(\int_E|f(x)g(x)|dx)\cdot(\int_E|g(x)|^{\frac{p}{p-1}})^{-\frac{p-1}{p}}=\int_E\frac{|f(x)g(x)|}{\parallel g\parallel_q}dx \end{aligned}\]

即得

\[\parallel f\parallel_p\cdot\parallel g\parallel_q\le\int_E|f(x)g(x)|dx. \]

\(\blacklozenge\)

定理: Minkowski不等式

\(f,g\in L^p(E)(1\le p\le\infty)\), 则

\[\parallel f+g\parallel_p\le\parallel f\parallel_p+\parallel g\parallel_p \]

\(\blacklozenge\)

\(p=1\)时上式用三角不等式即证, \(p=\infty\)时注意

\[|f(x)|\le\parallel f\parallel_{\infty},|g(x)|\le\parallel g\parallel_{\infty},\quad\text{a.e. }x\in E \]

得到

\[|f(x)+g(x)|\le|f(x)|+|g(x)|\le\parallel f\parallel_{\infty}+\parallel g\parallel_{\infty} \]

此即题式. 现在设\(1<p<+\infty\), 知

\[\begin{aligned} \int_E|f(x)+g(x)|^pdx&\le\int_E|f(x)+g(x)|^{p-1}\cdot|f(x)+g(x)|dx\\ &\le\int_E|f(x)+g(x)|^{p-1}\cdot|f(x)|dx+\int_E|f(x)+g(x)|^{p-1}\cdot|g(x)|dx \end{aligned}\]

现在对上右式第一个积分考虑Holder不等式, 有:

\[\begin{aligned} \int_E|f(x)+g(x)|^{p-1}\cdot|f(x)|dx&\le(\int_E|f(x)+g(x)|^{(p-1)\cdot\frac{p}{p-1}}dx)^{\frac{p-1}{p}}\cdot(\int_E|f(x)|^pdx)^{\frac{1}{p}}\\ &=\parallel f+g\parallel_p^{p-1}\cdot\parallel f\parallel_p \end{aligned}\]

同理对第二个积分有

\[\begin{aligned} \int_E|f(x)+g(x)|^{p-1}\cdot|g(x)|dx\le\parallel f+g\parallel_p^{p-1}\cdot\parallel g\parallel_p \end{aligned}\]

代入得到

\[\int_E|f(x)+g(x)|^pdx=\parallel f+g\parallel_p^p\le\parallel f+g\parallel_p^{p-1}\cdot\parallel f\parallel_p+\parallel f+g\parallel_p^{p-1}\cdot\parallel g\parallel_p \]

\(\parallel f+g\parallel_p\ne0\)时, 此即

\[\parallel f+g\parallel_p\le\parallel f\parallel_p+\parallel g\parallel_p. \]

\(\parallel f+g\parallel_p=0\)时, 命题自明.

\(\blacklozenge\)

定理: 反Minkowski不等式

\(0<p<1\), 则对\(f,g\in L^p(E)\), 有

\[\parallel|f|+|g|\parallel_p\ge\parallel f\parallel_p+\parallel g\parallel_p. \]

\(\blacklozenge\)

\(\parallel|f|+|g|\parallel_p=0\)时只能有\(\parallel f\parallel_p=\parallel g\parallel_p=0\), 此时结论显然. 下面设\(\parallel|f|+|g|\parallel_p>0\), 由反Holder不等式知

\[\begin{aligned} \parallel|f|+|g|\parallel_p^p=&\int_E(|f(x)|+|g(x)|)^{p-1}\cdot(|f(x)|+|g(x)|)dx\\ =&\int_E(|f(x)|+|g(x)|)^{p-1}\cdot|f(x)|dx+\int_E(|f(x)|+|g(x)|)^{p-1}\cdot|g(x)|dx\\ \ge&(\int_E(|f(x)|+|g(x)|)^{(p-1)\cdot\frac{p}{p-1}}dx)^{\frac{p-1}{p}}(\int_E|f(x)|^pdx)^{\frac{1}{p}}\\ &+(\int_E(|f(x)|+|g(x)|)^{(p-1)\cdot\frac{p}{p-1}}dx)^{\frac{p-1}{p}}(\int_E|g(x)|^pdx)^{\frac{1}{p}}\\ =&\parallel|f|+|g|\parallel_p^{p-1}\cdot\parallel f\parallel+\parallel|f|+|g|\parallel_p^{p-1}\cdot\parallel g\parallel \end{aligned}\]

此即

\[\parallel|f|+|g|\parallel=\parallel f\parallel+\parallel g\parallel. \]

\(\blacklozenge\)

\(L^p\)空间的结构

在Lebesgue积分中, 函数几乎处处相等可以导出它们的积分相等, 故在讨论\(L^p\)空间中的函数时, 把几乎处处相等的函数视作同一个元, 特别把几乎处处为零的函数的全体视作零元. 现在有下述定理.

定理: \(L^p(E)\)是赋范空间

对于\(f,g\in L^p(E)\), 定义

\[d(f,g)=\parallel f-g\parallel_p,\quad1\le p\le+\infty \]

\((L^p(E),d)\)是一个赋范空间.

\(\blacklozenge\)

逐一验证赋范空间的三个性质:

  • 显见\(d(f,g)\ge0\), 且\(d(f,g)=\parallel f-g\parallel=0\Leftrightarrow f(x)=g(x)\), a.e.
  • 显见\(\parallel f-g\parallel_p=\parallel g-f\parallel_p\Rightarrow d(f,g)=d(g,f)\).
  • 根据Minkowski不等式, 知

    \[\parallel f-g\parallel_p=\parallel f-h+h-g\parallel_p\le\parallel f-h\parallel_p+\parallel g-h\parallel_p \]

    这便是\(d(f,g)\le d(f,h)+d(g,h)\).

\(\blacklozenge\)

在确定范数后即可定义基于该范数的极限.

定义: \(L^p(E)\)中的收敛

\(f_k\in L^p(E)(k=1,2,\cdots)\). 若存在\(f\in L^p(E)\), 使得

\[\lim\limits_{k\rightarrow\infty}d(f_k,f)=\lim\limits_{k\rightarrow\infty}\parallel f_k-f\parallel_p=0 \]

则称\(\{f_k\}\)\(L^p(E)\)的意义收敛\(f\), \(\{f_k\}\)\(L^p(E)\)中的收敛列, \(f\)\(\{f_k\}\)\(L^p(E)\)中的极限.

注意下述基本事实:

  • 唯一性; 若

    \[\lim\limits_{k\rightarrow\infty}\parallel f_k-f\parallel_p=0,\quad\lim\limits_{k\rightarrow\infty}\parallel f_k-g\parallel_p=0 \]

    \(f=g\)(即\(f(x)=g(x)\) a.e.);
  • \(\lim\limits_{k\rightarrow\infty}\parallel f_k-f\parallel_p=0\), 则\(\lim\limits_{k\rightarrow\infty}\parallel f_k\parallel_p=\parallel f\parallel_p\).

定义: \(L^p(E)\)中的Cauchy列

\(\{f_k\}\subset L^p(E)\), 则\(\lim\limits_{k,j\rightarrow\infty}\parallel f_k-f_j\parallel_p=0\), 则称\(\{f_k\}\)\(L^p(E)\)中的Cauchy列.

在进入下一个定理之前, 先回顾关于函数收敛的两个定理.

定理: 依测度Cauchy列的收敛性

\(\{f_k(x)\}\)\(E\)上的依测度Cauchy列, 则在\(E\)上存在几乎处处有限的可测函数\(f(x)\), 使得\(\{f_k(x)\}\)\(E\)上依测度收敛于\(f(x)\).

定理(Riesz)

\(\{f_k(x)\}\)\(E\)上依测度收敛于\(f(x)\), 则存在子列\(\{f_{k_i}(x)\}\), 使得

\[\lim\limits_{i\rightarrow\infty}f_{k_i}(x)=f(x),\quad\text{a.e. }x\in E \]

\(\boldsymbol{\star}\)定理: \(L^p(E)\)的完备性

\(L^p(E)\)是完备的距离空间.

\(\blacklozenge\)

\(1\le p<+\infty\), 若\(\{f_k\}\subset L^p(E)\)满足\(\lim\limits_{k,j\rightarrow\infty}\parallel f_j-f_k\parallel_p=0\), 则对任给的\(\sigma>0\), 取

\[E_{j,k}(\sigma)=\{x\in E:|f_j(x)-f_k(x)|\ge\sigma\} \]

得到

\[\begin{aligned} \sigma(m(E_{k,j}(\sigma)))^{\frac{1}{p}}&=\sigma(\int_{E_{k,j}(\sigma)}dx)^{\frac{1}{p}}=(\int_{E_{k,j}(\sigma)}\sigma^pdx)^{\frac{1}{p}}\\ &\le(\int_{E_{k,j}(\sigma)}|f_j(x)-f_k(x)|^pdx)^{\frac{1}{p}}=\parallel f_j-f_k\parallel_p \end{aligned}\]

这说明

\[\lim\limits_{k,j\rightarrow\infty}m(E_{k,j}(\sigma))=0 \]

\(\{f_k(x)\}\)\(E\)上的依测度Cauchy列, 进而存在\(E\)上几乎处处有限的可测函数\(f(x)\), 使得\(\{f_k(x)\}\)\(E\)上依测度收敛到\(f(x)\), 从而由Riesz定理知可以选出\(\{f_k(x)\}\)的子列\(\{f_{k_i}(x)\}\)使得

\[\lim\limits_{i\rightarrow\infty}f_{k_i}(x)=f(x)\quad\text{a.e. }x\in E \]

由Fatou引理知

\[\int_E|f_k(x)-f(x)|^pdx=\int_E\lim\limits_{i\rightarrow\infty}|f_k(x)-f_{k_i}(x)|^pdx\le\varliminf\limits_{i\rightarrow\infty}\int_E|f_k(x)-f_{k_i}(x)|^pdx \]

\(\lim\limits_{k\rightarrow\infty}\int_E|f_k(x)-f(x)|^pdx=0\), 即

\[\lim\limits_{k\rightarrow\infty}\parallel f_k-f\parallel_p=0 \]

最后, 由\(\parallel f\parallel_p\le\parallel f-f_k\parallel_p+\parallel f_k\parallel_p\)\(f\in L^p(E)\).
再设\(p=+\infty\), 若\(\{f_k\}\subset L^{\infty}(E)\)满足\(\lim\limits_{k,j\rightarrow\infty}\parallel f_k-f_j\parallel_{\infty}=0\), 根据本性上确界的定义知对任意一对自然数\(k,j\), 总有

\[|f_k(x)-f_j(x)|\le\parallel f_k-f_j\parallel_{\infty},\quad\text{a.e. } x\in E \]

故存在零测集\(Z\), 使得对于一切自然数\(k,j\), 有

\[|f_k(x)-f_j(x)|\le\parallel f_k-f_j\parallel_{\infty},\quad x\notin Z \]

进而根据Cauchy准则, 存在\(f(x)\)使得

\[\lim\limits_{k\rightarrow\infty}f_k(x)=f(x),\quad x\in E\backslash Z, \]

现在对任给的\(\varepsilon\), 取自然数\(N\)使得

\[\parallel f_k-f_j\parallel_{\infty}<\varepsilon,\quad j,k>N \]

由于当\(k>N\)\(x\in E\backslash Z\)时有

\[|f_k(x)-f(x)|=\lim\limits_{j\rightarrow\infty}|f_k(x)-f(x)|\le\varepsilon \]

故当\(k>N\)时有\(\parallel f_k-f\parallel_{\infty}\le\varepsilon\), 显见\(f\in L^{\infty}(E)\), 进而

\[\parallel f_k-f\parallel_{\infty}\rightarrow0,\quad k\rightarrow\infty. \]

\(\blacklozenge\)

除开教材中的定理, 有一个例子需要额外关注, 下面以定理形式给出.

定理

\(f\in L^r(E)\cap L^s(E)\), 且\(0<r<p<s\le\infty\), 同时

\[0<\lambda<1,\quad\frac{1}{p}=\frac{\lambda}{r}+\frac{1-\lambda}{s} \]

\[\parallel f\parallel_p\le\parallel f\parallel_r^{\lambda}\cdot\parallel f\parallel_s^{1-\lambda}. \]

\(\blacklozenge\)

\(r<s<\infty\)时, 有

\[\int_E|f(x)|^pdx=\int_E|f(x)|^{\lambda p}\cdot|f(x)|^{(1-\lambda)p}dx\le(\int_E|f(x)|^rdx)^{\frac{\lambda p}{r}}\cdot(\int_E|f(x)|^sdx)^{\frac{(1-\lambda)p}{s}} \]

\(r<s=\infty\)时, 有

\[\int_E|f(x)|^pdx\le\parallel f^{p-r}\parallel_{\infty}\int_E|f(x)|^rdx=\parallel f\parallel_r^{p\lambda}\cdot\parallel f\parallel_{\infty}^{p(1-\lambda)}. \]

\(\blacklozenge\)

上述事实还说明, 当\(r<p<s\le\infty\)时, 有

\[\parallel f\parallel_p\le\max(\parallel f\parallel_r,\parallel f\parallel_s). \]

特别地, 如果\(r=1,s=\infty\), 可知如果\(f\in L^1\cap L^{\infty}\), 则任取\(p\in(1,\infty)\), 总有\(f\in L^p\).

posted @ 2023-06-13 00:46  un-ha-pde  阅读(245)  评论(0)    收藏  举报