洛谷 P3140 [USACO16FEB] Circular Barn Revisited G 题解

问题描述
现在有一个由 \(n\) 个谷仓组成的环,相邻的两个谷仓是可以互相到达的。 同时,每个谷仓都有一个打开通往外部的门。 奶牛们可以在谷仓内部顺时针行走。 现在所有奶牛都在谷仓外部, 可以打开\(k\)个通往外部的门谷仓与外部联通。 求奶牛们所走的距离的和的最小值
\(3 \leq n \leq 100\)
\(1 \leq k \leq 7\)
Slove
注意到问题是在一个环上的,且总代价和区间内部所包含的点有关。 考虑区间dp
既然是区间dp, 那么肯定有两个维度记录起始点和终点.
同时打开门的数量不同也会使得答案不同。
故得出
\(dp[i][l][r]\) 为在 \([l,r]\) 的范围内设置 \(i\) 个谷仓的最小代价, 要求这 \([l,r]\) 中每个谷仓都可以到达
我们令 \(get\_path(i,j)\) 为从 \(i\) 顺时针走到 \(j\) 的距离
那么对于 \(i=1\) , 开口必须设立在 \(l\) 处,所以对于所有的 \(i=1\)
\[dp[i][l][r] = \Sigma_{j=l}^r get\_path(l, j)* num_j
\]
对于 \(i > 1\), 每次从打开 \(i-1\) 门的状态转移, 枚举分割点 \(k\)
我们令 \(pre(k)\) 为 \(k\) 在环上顺时针的前驱
\[dp[i][l][r] = std::min(dp[i - 1][l][pre(k)] + dp[1][k][r], dp[i][l][r]);
\]
具体代码
//+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
//
// By txp2024 www.luogu.com.cn TXP2023 www.github.com
//
//+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
#pragma once
#include <vector>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <numeric>
#include <ctype.h>
#include <cstdarg>
#include <climits>
#include <time.h>
#include <iostream>
#include <stdint.h>
#define _FREAD true
#define MAX_INF 1e18
#define MAX_NUM_SIZE 35
#define MAXN 105
#define MAXK 10
typedef long long int ll;
typedef unsigned long long int ull;
template<typename _T>
inline _T fpow(_T a, _T n, _T mod) {
_T base = a, ret = 1;
while (n) {
if (n & 1) {
ret = ret * base;
ret %= mod;
}
base = base * base;
base %= mod;
n >>= 1;
}
return ret % mod;
}
//快读函数声明
template< typename Type >
inline Type fread(Type* p = nullptr);
//快速输出函数
template<typename Type>
inline void fwrite(Type x);
ll barn[MAXN], sum[MAXN];
ll dp[MAXK][MAXN][MAXN];
ll n, m;
inline ll get_sum(ll l, ll r) {
if (l <= r) {
return sum[r] - sum[l - 1];
}
return sum[n] - sum[l - 1] + sum[r];
}
int main() {
#ifdef _FREOPEN
freopen("input.txt", "r", stdin);
#endif // _FREOPEN
#ifdef _RUN_TIME
clock_t start = clock();
#endif // _RUN_TIME
fread(&n), fread(&m);
for (size_t i = 1; i <= n; i++) {
fread(&barn[i]);
sum[i] = sum[i - 1] + barn[i];
}
for (size_t i = 1; i <= n; i++) {
for (size_t j = 1; j <= n; j++) {
if (i == j) {
continue;
}
ll cnt = 0, k = i;
do {
++k, ++cnt;
if (k > n) {
k -= n;
}
dp[1][i][j] += cnt * barn[k];
} while (k != j);
}
}
for (size_t i = 2; i <= m; i++) {
for (size_t len = i; len <= n; len++) {
for (size_t l = 1; l <= n; l++) {
ll r = l + len - 1;
if (r > n) {
r -= n;
}
dp[i][l][r] = MAX_INF;
if (l == r) {
continue;
}
ll k = l + i - 2;
do {
++k;
if (k > n) {
k -= n;
}
//dp[1][i][j] += cnt * barn[k];
ll temp = k - 1;
if (temp == 0) {
temp = n;
}
dp[i][l][r] = std::min(dp[i - 1][l][temp] + dp[1][k][r], dp[i][l][r]);
} while (k != r);
}
}
}
ll ans = MAX_INF;
for (size_t i = 1; i <= n; i++) {
ll j = i + n - 1;
if (j > n) {
j -= n;
}
ans = std::min(dp[m][i][j], ans);
}
printf("%lld\n", ans);
#ifdef _RUN_TIME
printf("The running duration is not less than %ld ms\n", clock() - start);
#endif // _RUN_TIME
return 0;
}
template< typename Type >
inline Type fread(Type* p) {
#if _FREAD
Type ret = 0, sgn = 0, ch = getchar();
while (!isdigit(ch)) {
sgn |= ch == '-', ch = getchar();
}
while (isdigit(ch)) ret = ret * 10 + ch - '0', ch = getchar();
if (p != nullptr) {
*p = Type(sgn ? -ret : ret);
}
return sgn ? -ret : ret;
#else
if (p == nullptr) {
Type temp;
p = &temp;
}
scanf("%lld", p);
return *p;
#endif // _FREAD
}
template<typename Type>
inline void fwrite(Type x) {
int sta[MAX_NUM_SIZE];
int top = 0;
do {
sta[top++] = x % 10, x /= 10;
} while (x);
while (top) {
putchar(sta[--top] + '0');
} // 48 是 '0'
return;
}
/**
* ,----------------, ,---------,
* ,-----------------------, ," ,"|
* ," ,"| ," ," |
* +-----------------------+ | ," ," |
* | .-----------------. | | +---------+ |
* | | | | | | -==----'| |
* | | | | | | | |
* | | C:\>rp++ | | | |`---= | |
* | | | | | |==== ooo | ;
* | | | | | |(((( [33]| ,"
* | `-----------------' | / |(((( | ,"
* +-----------------------+/ | |,"
* /_)______________(_/ +---------+
* _______________________________
* / oooooooooooooooo .o. oooo /, /-----------
* / ==ooooooooooooooo==.o. ooo= // /\--{)B ,"
* /_==__==========__==_ooo__ooo=_/' /___________,"
*
*/

浙公网安备 33010602011771号