Loading

摘要: 『笔记』快速recap CS4240主要知识 1.1 Logistics & 1.2 Feedforward Deep feed forward networks: approximate some function f* Training a network: 1. present a train 阅读全文
posted @ 2022-08-07 22:22 traviscui 阅读(49) 评论(0) 推荐(0)
摘要: 『笔记』PCL Tutorials学习 https://www.notion.so/PCL-Tutorials-f59b97b8bbd349d185dcc2ddb877bde9 阅读全文
posted @ 2022-08-07 22:11 traviscui 阅读(11) 评论(0) 推荐(0)
摘要: 『笔记』OpenCV-Python Tutorials学习 https://www.notion.so/OpenCV-Python-Tutorials-8eedd1aa8fea46279d8acbd59abcedbd 阅读全文
posted @ 2022-08-07 22:09 traviscui 阅读(7) 评论(0) 推荐(0)
摘要: 『论文』PointPainting 2. PointPainting Architecture 2.1. Image Based Semantics Network The image sem.seg. network takes in an input image and outputs per 阅读全文
posted @ 2022-08-07 22:03 traviscui 阅读(52) 评论(0) 推荐(0)
摘要: 『笔记』KITTI KITTI devkit_object包 浏览devkit_object.zip内容 This file describes the KITTI 2D object detection and orientation estimation benchmark, the 3D ob 阅读全文
posted @ 2022-08-07 21:55 traviscui 阅读(209) 评论(0) 推荐(0)
摘要: 『论文』PointNet++ https://zhuanlan.zhihu.com/p/266324173 Few prior works study deep learning on point sets. PointNet [20] is a pioneer in this direction. 阅读全文
posted @ 2022-08-07 21:14 traviscui 阅读(40) 评论(0) 推荐(0)
摘要: 『论文』PointNet 1. Introduction To perform weight sharing and other kernel optimizations, most researchers typically transform such data to regular 3D vo 阅读全文
posted @ 2022-08-07 20:44 traviscui 阅读(35) 评论(0) 推荐(0)
摘要: 『论文』VoxelNet 2. VoxelNet 2.1. VoxelNet Architecture 2.1.1 Feature Learning Network Voxel Partition + Grouping + Random Sampling Stacked Voxel Feature 阅读全文
posted @ 2022-08-07 07:20 traviscui 阅读(50) 评论(0) 推荐(0)
摘要: 『论文』SECOND 1. Introduction The key contributions of our work are as follows: We propose an improved method of sparse convolution that allows it to run 阅读全文
posted @ 2022-08-07 05:44 traviscui 阅读(175) 评论(0) 推荐(0)
摘要: 『论文』PointPillars 1. Introduction There are two key differences: 1) the point cloud is a sparse representation, while an image is dense and 2) the poin 阅读全文
posted @ 2022-08-07 05:18 traviscui 阅读(130) 评论(0) 推荐(0)