【常见分布及其特征(8)】连续型随机变量-正态分布*

正态分布

引例一

  1. 定义随机变量
    定义了一个连续均匀分布 U ( 0 , 1 ) U(0,1) U(0,1),并且定义了 n = 5 n=5 n=5独立的随机变量 X 1 X_1 X1 X 5 X_5 X5;并且均服从上述分布;即 X n ∼ U ( 0 , 1 ) , n = 1 , 2 , 3 , 4 , 5 X_n\sim U(0,1),\quad n=1,2,3,4,5 XnU(0,1),n=1,2,3,4,5
    则可以称这5个随机变量是独立同分布的

  2. 抽样
    对5个随机变量执行一次抽样;
    样本值:用小写字母表示,例如一次采样后得到的具体值为 x 1 , x 2 , … , x 5 x_1,x_2,…,x_5 x1,x2,,x5,其中每个 x i ∈ [ 0 , 1 ] x_i\in[0,1] xi[0,1]。一次采样后,样本值为:
    x 1 = Sample ( X 1 ) , x 2 = Sample ( X 2 ) , ⋯   , x 5 = Sample ( X 5 ) x_1=\text{Sample}(X_1),\quad x_2=\text{Sample}(X_2)\quad,\cdots,x_5=\text{Sample}(X_5) x1=Sample(X1),x2=Sample(X2),,x5=Sample(X5)
    以下是可能的抽样结果示例,这样的示例可以举出无限多个:

示例编号 均值 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5
示例 1 0.549289 0.896074 0.886996 0.374390 0.081029 0.507958
示例 2 0.419763 0.570370 0.107197 0.983434 0.221526 0.216287
示例 3 0.294898 0.185088 0.013277 0.408898 0.367660 0.499566

附一个生成的代码

import numpy as np

sp = np.random.random((3,5))
print(sp)
# 对每行求均值
row_means = np.mean(sp, axis=1)
print(row_means)
print(np.column_stack((row_means, sp)))
  1. 扩大随机变量,再次抽样
    n = 1000 n=1000 n=1000独立的随机变量 X 1 X_1 X1 X 1000 X_{1000} X1000;并且均服从上述分布;即 X n ∼ U ( 0 , 1 ) , n = 1 , 2 , 3 , ⋯   , 1000 X_n\sim U(0,1),\quad n=1,2,3,\cdots,1000 XnU(0,1),n=1,2,3,,1000
示例编号 均值 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 ⋯ \cdots x 1000 x_{1000} x1000
示例 1 0.50698297 0.84908216 0.13467754 0.374390 ⋯ \cdots 0.06873601
示例 2 0.48454968 0.66022503 0.03217824 0.983434 ⋯ \cdots 0.70057909
示例 3 0.49077309 0.25737745 0.04264012 0.408898 ⋯ \cdots 0.30889889

观察均值这一列,可以明显看出,当 n = 5 → n = 1000 n=5 \rightarrow n=1000 n=5n=1000,时,均值的稳定程度明显提高了,而且趋近于 X i X_i Xi的期望了;

  • 如果觉得以上的不够直观,以下展示了各12组示例,第一列均为均值,均匀分布;
# n=5时的结果
[0.51177121 0.64972725 0.79864437 0.26144494 0.02885988 0.82017961]
[0.5387426  0.15816605 0.72253606 0.67549004 0.60952049 0.52800036]
[0.25243907 0.87643116 0.09397123 0.00179747 0.02647162 0.26352389]
[0.49120919 0.37110317 0.56440969 0.69843874 0.38633834 0.43575599]
[0.49709079 0.96020927 0.6040899  0.60171813 0.05464104 0.26479562]
[0.56874528 0.15495668 0.72611065 0.6985964  0.61305459 0.65100806]
[0.56970291 0.21338898 0.72839761 0.26438999 0.98735146 0.6549865 ]
[0.57184459 0.56795882 0.53453043 0.59070316 0.75968399 0.40634656]
[0.67773425 0.91024391 0.85876042 0.70395502 0.10358019 0.81213171]
[0.64856283 0.57525252 0.87790623 0.49302471 0.31732044 0.97931024]
[0.37102274 0.65237646 0.55096309 0.44173061 0.07955758 0.13048595]
[0.4822816  0.47407257 0.21329814 0.27420517 0.98064111 0.46919102]

# n=1000时的结果
[0.4945074  0.50273574 0.52522912 ... 0.38031662 0.42860546 0.72074343]
[0.49621251 0.67881337 0.03880736 ... 0.92981839 0.65805523 0.38261631]
[0.49262885 0.81203807 0.43174388 ... 0.68740689 0.92866097 0.56505152]
[0.50967169 0.14997624 0.93324006 ... 0.53000919 0.48711552 0.26967198]
[0.49939796 0.63793338 0.87528609 ... 0.98436646 0.91608776 0.32658811]
[0.50291407 0.32440555 0.03177322 ... 0.96926983 0.52440474 0.73910828]
[0.50908082 0.88887095 0.46454131 ... 0.04160692 0.63408981 0.72006609]
[0.5006352  0.25307945 0.5568652  ... 0.96087729 0.10194726 0.54255956]
[0.49424821 0.08349161 0.35183987 ... 0.22038619 0.93989811 0.14642372]
[0.48437207 0.4528952  0.91680597 ... 0.20512634 0.19849493 0.53023536]
[0.49658921 0.92238767 0.17093952 ... 0.71290388 0.41343221 0.18931387]
[0.49429535 0.96498261 0.81471275 ... 0.93917227 0.84554065 0.59315527]
  • 不同的 n n n绘制分布图像如下,可见随着n的增大,图像趋向于一个钟形曲线;
    在这里插入图片描述
  1. 其他分布抽样
    若随机变量服从指数分布呢?设 X i ∼ Exp ( 2 ) X_i \sim \text{Exp}(2) XiExp(2)
    执行相同的采样方式,可见,同样伴随着n的增大, 均值 均值 均值这一列的稳定性提高了,且都趋向于 X i X_i Xi的期望
# n=5时的结果
[0.73411466 0.70151055 0.58552744 1.40848118 0.52992534 0.44512879]
[0.81113348 0.53431281 0.27084777 0.64021452 0.17419464 2.43609766]
[0.40670354 0.28069173 0.09011335 0.46911745 0.77372054 0.4198746 ]
[0.39217388 0.71925745 0.33419681 0.14974111 0.43873465 0.31893941]
[1.10752828 0.91971051 1.88885734 0.78719437 1.72043777 0.22144144]
[0.66299886 0.53282981 0.52905482 0.51776715 1.00682295 0.72851959]
[0.52414378 0.55970346 1.30554564 0.35656776 0.16566018 0.23324187]
[0.74790822 0.15209213 1.45643592 0.00856253 1.65698463 0.4654659 ]
[0.47633977 0.08690879 0.7636792  0.09175103 0.91023342 0.52912641]
[0.24892092 0.11581998 0.58664384 0.07320079 0.35082388 0.11811614]
[0.76317128 0.18174787 1.81766939 0.37271795 0.9385246  0.50519659]
[0.28458274 0.54393585 0.21895033 0.05139447 
posted @ 2025-08-01 14:34  tomcat4014  阅读(0)  评论(0)    收藏  举报  来源