chatgpt-to-md优化并重新复习
chatgpt-to-md优化并重新复习
之前原本写的又重新改了改
[https://www.cnblogs.com/tokepson/p/19152535](记录 | 个人开发库推送至PyPi流程梳理(ChatGPT to Markdown 工具发布完整流程) )
以上废话
总之因为发现只支持转换Chatgpt的zip文件,因此重新优化了整个代码
主要代码等会开源至github
- ai-conversation-exporter

后续进行更新和发布主要修改pyproject.toml文件。
AI对话导出工具:从多平台数据到Markdown的完整发布指南
本文记录了将AI对话导出工具从单一平台支持扩展到多平台支持,并成功发布到PyPI的完整流程。包含项目架构设计、代码实现、发布流程和故障排除。
项目演进背景
最初开发的 chatgpt-to-md 工具仅支持ChatGPT的zip导出格式,但在实际使用中发现用户需要支持更多AI平台。为此重构了整个项目,创建了 ai-conversation-exporter,支持ChatGPT、DeepSeek、Claude等多个平台的对话导出。
项目架构设计
模块化解析器设计
采用插件式架构,每个AI平台有独立的解析器:
ai-exporter/
├── src/
│ └── ai_exporter/
│ ├── __init__.py
│ ├── core.py # 核心转换逻辑
│ └── parsers/ # 解析器模块
│ ├── __init__.py
│ ├── base.py # 解析器基类
│ ├── chatgpt.py # ChatGPT解析器
│ ├── deepseek.py # DeepSeek解析器
│ ├── claude.py # Claude解析器
│ └── universal.py # 通用解析器
├── pyproject.toml
├── README.md
└── LICENSE
核心特性
- 多平台支持:ChatGPT(.zip)、DeepSeek(.jsonl)、Claude(.json)
- 自动格式检测:根据文件内容和扩展名自动选择解析器
- 统一输出:标准Markdown格式,包含YAML front matter
- 容错处理:通用解析器作为后备方案
关键技术实现
1. 解析器基类设计
# src/ai_exporter/parsers/base.py
from abc import ABC, abstractmethod
from typing import List, Dict, Any
class BaseParser(ABC):
@abstractmethod
def can_parse(self, file_path: str) -> bool: ...
@abstractmethod
def parse(self, file_path: str) -> List[Dict[str, Any]]: ...
@abstractmethod
def get_platform_name(self) -> str: ...
2. 平台特定解析器
每个解析器实现特定平台的格式处理:
- ChatGPTParser: 处理zip压缩包中的conversations.json
- DeepSeekParser: 处理JSONL格式(每行一个消息)
- ClaudeParser: 处理结构化JSON格式
- UniversalParser: 通用JSON/JSONL格式处理
3. 核心转换引擎
# src/ai_exporter/core.py
class AIExporter:
def __init__(self):
self.parsers = [
ChatGPTParser(), DeepSeekParser(),
ClaudeParser(), UniversalParser()
]
def detect_platform(self, file_path: str):
# 自动检测文件格式并选择合适的解析器
for parser in self.parsers:
if parser.can_parse(file_path):
return parser
return self.parsers[-1] # 返回通用解析器
发布流程完整指南
1. 项目配置 (pyproject.toml)
[build-system]
requires = ["setuptools>=45", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "ai-conversation-exporter" # 唯一包名
version = "0.1.0"
description = "Export conversations from multiple AI platforms to Markdown"
authors = [{name = "Your Name", email = "your.email@example.com"}]
readme = "README.md"
license = {text = "MIT"}
requires-python = ">=3.7"
[project.scripts]
ai-export = "ai_exporter.core:main"
2. 构建和发布命令
# 进入项目目录
cd "your-project-path"
# 清理旧构建
rm -rf dist/ build/ *.egg-info/
# 构建分发包
python -m build
# 检查包文件
twine check dist/*
# 上传到PyPI
twine upload dist/* -u __token__ -p pypi-你的token
3. 使用示例
# 安装
pip install ai-conversation-exporter
# 使用
ai-export chatgpt_export.zip
ai-export deepseek_conversation.jsonl -o ./output
ai-export claude_chat.json
故障排除手册
常见问题及解决方案
1. 403 Forbidden 错误
原因:
- 包名已被占用
- API Token无效或过期
- Token权限不足
解决方案:
# 检查包名是否被占用
# 访问:https://pypi.org/project/your-package-name/
# 修改为唯一包名(在pyproject.toml中)
name = "your-unique-package-name"
# 重新生成API Token(选择Entire account权限)
2. ModuleNotFoundError
原因:模块导入路径错误
解决方案:使用相对导入
# 正确方式
from .parsers import ChatGPTParser
# 错误方式
from parsers import ChatGPTParser
3. 文件格式识别失败
解决方案:增强通用解析器
def _deep_search_messages(self, data: Any) -> List:
# 递归搜索消息数据
# 支持多种嵌套结构
开发最佳实践
1. 版本管理
- 使用语义化版本号 (MAJOR.MINOR.PATCH)
- 每次发布前更新版本号
2. 测试策略
# 创建测试文件验证各种格式
def create_test_files():
# 生成不同平台的测试数据
# 验证解析器是否正确工作
3. 错误处理
- 提供详细的错误信息
- 实现优雅降级(通用解析器)
- 记录解析过程用于调试
项目亮点
- 架构灵活:易于添加新平台解析器
- 用户体验:自动检测格式,无需手动指定
- 输出规范:统一的Markdown格式,便于后续处理
- 错误容忍:多重解析策略确保成功率
总结
通过模块化设计和标准化发布流程,成功将单一功能工具扩展为支持多平台的通用解决方案。关键成功因素包括:
- 清晰的架构设计
- 完整的错误处理
- 标准化的发布流程
- 详细的文档记录
这个项目不仅解决了实际问题,还提供了一个可复用的Python包开发模板,适用于各种工具类项目的开发和发布。
项目地址: [GitHub链接]
PyPI包: ai-export-tool-16673
许可证: MIT

浙公网安备 33010602011771号