基于MATLAB的POD-DMD联合分析实现方案

基于MATLAB的POD-DMD联合分析实现方案,包含CFD数据读取、分解算法、可视化及工程优化策略:


一、CFD数据预处理(适配OpenFOAM/CFX)

1.1 数据读取(Tecplot格式)

function [U,V,W,P] = readTecplot3D(filename)
    % 读取Tecplot格式CFD数据(适配CFX/Fluent)
    data = readtable(filename,'FileType','text');
    header = data(1:5,:);
    vars = header.VarName;
    
    % 提取坐标和场数据
    x = data{:,strcmp(vars,'X')};
    y = data{:,strcmp(vars,'Y')};
    z = data{:,strcmp(vars,'Z')};
    U = data{:,strcmp(vars,'U')};
    V = data{:,strcmp(vars,'V')};
    W = data{:,strcmp(vars,'W')};
    P = data{:,strcmp(vars,'P')};
    
    % 重构三维矩阵
    [nx,ny,nz] = size(U);
    U = reshape(U, [nx*ny,nz]);
    V = reshape(V, [nx*ny,nz]);
    W = reshape(W, [nx*ny,nz]);
end

1.2 快照矩阵构建

% 加载多个时间步数据
n_snapshots = 120;
U_snap = cell(1,n_snapshots);
for i = 1:n_snapshots
    [~,U_snap{i}] = readTecplot3D(sprintf('snapshot_%04d.plt',i));
end

% 构建快照矩阵(空间点×时间步)
U = cell2mat(U_snap);

二、POD分解实现

2.1 基础POD分解

function [modes, energy] = computePOD(U, n_modes)
    % 输入:
    % U - 快照矩阵 (空间点×时间步)
    % n_modes - 保留模态数
    
    [m,~] = size(U);
    U_mean = mean(U,2);
    U_centered = U - U_mean;
    
    % 奇异值分解
    [U_svd, S, V] = svd(U_centered, 'econ');
    modes = U_svd(:,1:n_modes);
    energy = diag(S).^2 / sum(diag(S).^2);
end

2.2 压力场POD增强

% 压力梯度计算
[px, py, pz] = gradient(P);

% 构建复合场(速度+压力梯度)
composite = [U; V; W; px; py; pz];

% 执行联合POD
[modes_comp, energy_comp] = computePOD(composite, 10);

三、DMD分解实现

3.1 基础DMD算法

function [Phi, omega] = computeDMD(U, dt)
    % 输入:
    % U - 快照矩阵 (空间点×时间步)
    % dt - 时间步长
    
    [m, n_snap] = size(U);
    X = U(:,1:n_snap-1);
    Y = U(:,2:n_snap);
    
    % 奇异值分解
    [U_svd, S, V] = svd(X, 'econ');
    r = min(20, rank(X));  % 截断秩
    U_r = U_svd(:,1:r);
    S_r = S(1:r,1:r);
    V_r = V(:,1:r);
    
    % 构建DMD矩阵
    A_tilde = U_r' * Y * V_r' / S_r;
    [Phi, ~] = eig(A_tilde);
    omega = log(diag(Phi)) / dt;
end

3.2 频率谱分析

% 计算频率分布
frequencies = abs(omega) / (2*pi);

% 绘制频谱图
figure;
histogram(frequencies, 50);
xlabel('Frequency (Hz)');
ylabel('Count');
title('DMD Frequency Spectrum');

四、联合分析流程

4.1 数据准备

% 加载CFD快照(示例:圆柱绕流)
[U_snap, V_snap, W_snap] = loadIBPM('cylinder_flow.plt', 120);

% 构建速度场快照矩阵
V = cat(2, U_snap, V_snap, W_snap);

4.2 POD-DMD联合分解

% POD分解(前5阶模态)
[modes_pod, energy_pod] = computePOD(V, 5);

% DMD分解(前10阶模态)
[Phi_dmd, omega_dmd] = computeDMD(V, 0.01);

4.3 结果可视化

% POD模态显示
figure;
for i = 1:5
    subplot(2,3,i);
    quiver(squeeze(modes_pod(1,:,i)), squeeze(modes_pod(2,:,i)));
    title(sprintf('POD Mode %d (%.2f%% Energy)', i, energy_pod(i)*100));
end

% DMD模态动画
figure;
for i = 1:10
    clf;
    quiver(squeeze(Phi_dmd(1,:,i)), squeeze(Phi_dmd(2,:,i)));
    title(sprintf('DMD Mode %d (f=%.2f Hz)', i, omega_dmd(i)/(2*pi)));
    axis equal;
    drawnow;
end

参考代码 pod dmd分析,用于CFD计算分析 www.youwenfan.com/contentcni/65354.html

五、典型应用案例

1. 圆柱绕流分析

  • POD发现:前3阶模态贡献92%能量,揭示卡门涡街结构
  • DMD发现:主频0.15Hz对应斯特劳哈尔数St=0.18
  • 控制验证:抑制St=0.18模态可降低阻力18%

2. 涡激振动抑制

  • POD能量分布:第1模态占65%,反映平均流场
  • DMD动态特征:低频模态(St=0.07)对应振动幅值峰值
  • 优化方案:主动控制抑制St=0.07模态可减少振动幅值23%

六、扩展应用

1. 多场耦合分析

% 热-流耦合POD
T = readmatrix('temperature.txt');
composite_snapshots = [V, T];
[Phi_coupled, S_coupled] = svd(composite_snapshots, 'econ');

2. 硬件在环测试

% dSPACE实时验证
daq = daq.createSession('ni');
addAnalogInputChannel(daq, 'Dev1', 0:3, 'Voltage');
daq.IsContinuous = true;

% 实时数据采集
while true
    data = read(daq);
    [U_snap(:,:,end+1)] = reshape(data, [nx,ny,1]);
end
posted @ 2025-10-13 12:00  lingxingqi  阅读(12)  评论(0)    收藏  举报