摘要:
回顾一下,我们已经严格地构造了三个基本的数系:自然数系 $\mathbb N$、整数系 $\mathbb Z$ 和有理数系 $\mathbb Q$。这些数已经足够用来做大量的数学事项。但是这还是不够用的,例如在微积分学、三角学甚至几何学中。所以人们需要用实数系来取代有理数系。
实数无法用有理数来表示,但是却明确地处于有理数之间的某个 “空隙” 中:例如 $\sqrt 2$,你任意说一个有理数 $q$,我都能说 $q$ 比 $\sqrt2$ 大还是小,我只需比较 $q^2$ 和 $2$ 的大小关系。实数没有明显的规律,我们不能仅通过引入 $\sqrt[p]{q}$ 之类的符号就能构造所有的实数(我们也不能通过 “方程的根” 来定义实数,因为超越数如 $\pi$ 等的存在)。种种限制下,柯西找到了从有理数定义实数的一个好方法:“取无限有理数序列的极限”。这就好像我们用二分法或者牛顿迭代法确定 $\sqrt 2$,无限地进行下去,我们就能用有理数无限地逼近它,虽然不会达到它。
阅读全文