07 2018 档案

摘要:吴恩达第2课第2周编程习题 目标:使用mini—batch来加快学习速度;比较梯度下降,momentum,adam的效果 核心:指数加权平均值得计算及其意义,它是momentum,RMSProp,Adam算法的基石 不足:本例程没有使用学习率衰减的步骤,同时本例程只适于3层的二分法的神经网络 常记点: 1. 偏差修正时是除以,此处是-,t从1开始; 2. L=len(parameters) //2... 阅读全文
posted @ 2018-07-24 23:27 天字三号房 阅读(350) 评论(0) 推荐(0)
摘要:2-2-1:mini-batch初步 mini-batch,将巨大的数据集的样本,不再做一个向量里做运算了,而是分割成T个小样本的合集。 特点:一次只处理m/T个样本,执行深度学习过程 优点:当遍历完整个数据集时,执行了T次梯度下降,加快了学习过程。 并不再是人为的去规定遍历多少次数据集了,而是根据条件去选择合适时机终止(如损失函数或者达到一定的值,用while语句确定) 一代(one epoch... 阅读全文
posted @ 2018-07-23 21:39 天字三号房 阅读(152) 评论(0) 推荐(0)
摘要:1.6其它防止过拟合方法 1.扩增数据,(如果不能获取更多的新数据时,你可以将图片水平翻转,任意裁剪图片,对于光学字符,可以扭曲旋转) 2.early stop 即在测试误差小的一个点时,就停止继续迭代下去,如在下图标记的地方就停止迭代 原理:一开始W很小,接近0,神经网络简单, early stop的缺点,过早的停止迭代,造成训练误差很大 纠正一个点:训练数据集是找到一个合适的算法,... 阅读全文
posted @ 2018-07-19 21:56 天字三号房 阅读(157) 评论(0) 推荐(0)
摘要:1.1数据分集 将所有的训练划分为3个集:训练集,验证集,测试集 验证集:迭代选择出最优的几个算法 测试集如果不需要做无偏估计时,可省略 数据量小622(73)开 大时可以(98/1/1)或者(99.5/0.4/0.1)开 无偏估计,验证你的数据是否遵循同一个分布 1.2 方差,偏差 在神经网络中,偏差指的事训练数据集的表现,方差对应测试集 如果训练集的误差很大,即偏差很大,称之为欠拟合 如果训练... 阅读全文
posted @ 2018-07-18 23:30 天字三号房 阅读(257) 评论(0) 推荐(0)
摘要:第四周编程 目标:建立一个深层的神经网络识别猫 核心思想: 正向传播 反向传播 需要注意的事正反向传播的初始值, , , 数据集:与第一个编程作业的数据集一样 代码流程: 根据神经网络结构初始化参数(W,b) 将单元函数写出来(linear,sigmoid,relu,sigmoid_backward,relu_backward) 正反向传播,输出梯度 单步梯度下降更... 阅读全文
posted @ 2018-07-18 11:51 天字三号房 阅读(1276) 评论(0) 推荐(1)
摘要:第四周 4.1深度神经网络符号约定 L=4______(神经网络层数) 4.2 校正矩阵的维数 校正要点:,, dZ,dA,dW,db都与它们被导数(Z,A,W,b)的维数相同 4.3 为什么使用深层表示 按神经网络的概念(仿人脑):有浅层的简单识别出一些特征,然后再通过深层的组合,最终,整个网络实现一个复杂的问题 按电路来说:一个巨大的计算问题,分几路出去(特征,隐藏层... 阅读全文
posted @ 2018-07-16 21:10 天字三号房 阅读(164) 评论(0) 推荐(0)
摘要:平面数据分类 吴恩达深度学习第一课第三周编程作业 目的:分类空间中的点 方案:二分分类法 神经网络结构:单隐藏网络,n_h=4(n_h是一个超参数) 隐藏层使用的是tanh作为激活函数,输出层是sigmoid函数 X是一个(2,400),Y是一个(1,400)的矩阵,X[0]表示x的坐标值,X[1]表示y的坐标值,从而确定平面上的一点 Y是一个很粗糙的行向量,前半部分都是0,后半部分都是1.... 阅读全文
posted @ 2018-07-15 22:11 天字三号房 阅读(502) 评论(0) 推荐(0)
摘要:2.1 双层神经网络 图 1 图 2 图1是一个双层网络模型,实际上有三层,但是通常把输入层给忽略掉 称为输入层 注意层了,图1层有4个节点,图2只要1个, 所以图1 应该是一个(4,3)的矩阵,图2的是一个(1,3)的矩阵 ps:坚持将前一层的特征的权重做成一列放入矩阵中,所以每一个都是(3,1)的列向量 以前一直都是使用,np.dot(.T,X),这里也同样也沿用这个设定 所以,... 阅读全文
posted @ 2018-07-14 23:10 天字三号房 阅读(207) 评论(0) 推荐(0)
摘要:摘要:算法详解;代码;可视化查看超参数影响 目标:识别一张图是不是猫 数据集:训练数据209张64*64 测试数据50张 64*64 方案:二分分类法 算法:logistic回归 ,限定了你的输入(X),和做优化时,需要优化哪些量(W,b) 激活函数:sigmod sigmod函数图像: 特点:所有输出y值都落在0-1之间 ps:logistic回归是算法,但其激活函数... 阅读全文
posted @ 2018-07-13 21:41 天字三号房 阅读(1174) 评论(0) 推荐(0)
摘要:目录 2.1二分分类1 2.2 logistic回归1 2.3 logistic成本函数2 2.4 梯度下降法2 2.5 流程图3 2.6 计算图的导数计算3 2.7 logistic回归中单个样本的梯度下降3 2.8 m个样本成本函数梯度下降法4 2.10 更多的向量化指定5 2.11 广播... 阅读全文
posted @ 2018-07-13 19:56 天字三号房 阅读(155) 评论(0) 推荐(0)
摘要:第一次用word发到博客园,尝试一些东西 代码: deffb(): print('nmb') mathtype公式 图片 加粗 表格 红色字体 阅读全文
posted @ 2018-07-13 19:39 天字三号房 阅读(94) 评论(0) 推荐(0)