建立银行分控模型
神经网络
1 import pandas as pd 2 import numpy as np 3 from keras.models import Sequential 4 from keras.layers.core import Dense, Activation 5 # 参数初始化 6 inputfile = 'bankloan.xls' 7 data = pd.read_excel(inputfile) 8 x_test = data.iloc[:,:8].values 9 y_test = data.iloc[:,8].values 10 model = Sequential() # 建立模型 11 model.add(Dense(input_dim = 8, units = 8)) 12 model.add(Activation('relu')) # 用relu函数作为激活函数,能够大幅提供准确度 13 model.add(Dense(input_dim = 8, units = 1)) 14 model.add(Activation('sigmoid')) # 由于是0-1输出,用sigmoid函数作为激活函数 15 model.compile(loss = 'mean_squared_error', optimizer = 'adam') 16 # 编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary 19 model.fit(x_test, y_test, epochs = 1000, batch_size = 10) 20 predict_x=model.predict(x_test) 21 classes_x=np.argmax(predict_x,axis=1) 22 yp = classes_x.reshape(len(y_test)) 23 24 def cm_plot(y, yp): 25 from sklearn.metrics import confusion_matrix 26 cm = confusion_matrix(y, yp) 27 import matplotlib.pyplot as plt 28 plt.matshow(cm, cmap=plt.cm.Greens) 29 plt.colorbar() 30 for x in range(len(cm)): 31 for y in range(len(cm)): 32 plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center') 33 plt.ylabel('True label') 34 plt.xlabel('Predicted label') 35 return plt 36 cm_plot(y_test,yp).show()# 显示混淆矩阵可视化结果 37 score = model.evaluate(x_test,y_test,batch_size=128) # 模型评估 38 print(score)
1 输出结果: 0.12582740187644958
SVM支持向量机
1 import pandas as pd 2 import numpy as np 3 from sklearn import svm 4 from sklearn.metrics import accuracy_score 5 from sklearn.metrics import confusion_matrix 6 from matplotlib import pyplot as plt 7 import seaborn as sns 8 from sklearn.model_selection import train_test_split 9 data_load = "bankloan.xls" 10 data = pd.read_excel(data_load) 11 data.describe() 12 data.columns 13 data.index 14 ## 转为np 数据切割 15 X = np.array(data.iloc[:,0:-1]) 16 y = np.array(data.iloc[:,-1]) 17 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, train_size=0.8, test_size=0.2, shuffle=True) 18 svm = svm.SVC() 19 svm.fit(X_test,y_test) 20 y_pred = svm.predict(X_test) 21 accuracy_score(y_test, y_pred) 22 print(accuracy_score(y_test, y_pred)) 23 cm = confusion_matrix(y_test, y_pred) 24 heatmap = sns.heatmap(cm, annot=True, fmt='d') 25 heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right') 26 heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right') 27 plt.ylabel("true label") 28 plt.xlabel("predict label") 29 plt.show()
输出结果: 0.7857142857142857
决策树
1 import pandas as pd 2 import pydotplus 3 from sklearn.tree import DecisionTreeClassifier as DTC 4 from sklearn.tree import export_graphviz 5 from IPython.display import Image 6 from sklearn import tree 7 8 # 参数初始化 9 filename = 'bankloan.xls' 10 data = pd.read_excel(filename) # 导入数据 11 12 # 数据是类别标签,要将它转换为数据 13 x = data.iloc[:,:8].astype(int) 14 y = data.iloc[:,8].astype(int) 15 16 dtc = DTC(criterion='entropy') # 建立决策树模型,基于信息熵 17 dtc.fit(x, y) # 训练模型 18 19 # 导入相关函数,可视化决策树。 20 x = pd.DataFrame(x) 21 with open("tree.dot", 'w') as f: 22 export_graphviz(dtc, feature_names = x.columns, out_file = f) 23 f.close() 24 dot_data = tree.export_graphviz(dtc, out_file=None, #regr_1 是对应分类器 25 feature_names=data.columns[:8], #对应特征的名字 26 class_names=data.columns[8], #对应类别的名字 27 filled=True, rounded=True, 28 special_characters=True) 29 30 graph = pydotplus.graph_from_dot_data(dot_data) 31 graph.write_png('example2.png') #保存图像 32 Image(graph.create_png())