建立银行分控模型

神经网络

 1 import pandas as pd
 2 import numpy as np
 3 from keras.models import Sequential
 4 from keras.layers.core import Dense, Activation
 5 # 参数初始化
 6 inputfile = 'bankloan.xls'
 7 data = pd.read_excel(inputfile)
 8 x_test = data.iloc[:,:8].values
 9 y_test = data.iloc[:,8].values
10 model = Sequential()  # 建立模型
11 model.add(Dense(input_dim = 8, units = 8))
12 model.add(Activation('relu'))  # 用relu函数作为激活函数,能够大幅提供准确度
13 model.add(Dense(input_dim = 8, units = 1))
14 model.add(Activation('sigmoid'))  # 由于是0-1输出,用sigmoid函数作为激活函数
15 model.compile(loss = 'mean_squared_error', optimizer = 'adam')
16 # 编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary
19 model.fit(x_test, y_test, epochs = 1000, batch_size = 10)
20 predict_x=model.predict(x_test)
21 classes_x=np.argmax(predict_x,axis=1)
22 yp = classes_x.reshape(len(y_test))
23 
24 def cm_plot(y, yp):
25   from sklearn.metrics import confusion_matrix
26   cm = confusion_matrix(y, yp)
27   import matplotlib.pyplot as plt
28   plt.matshow(cm, cmap=plt.cm.Greens)
29   plt.colorbar()
30   for x in range(len(cm)):
31     for y in range(len(cm)):
32       plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center')
33   plt.ylabel('True label')
34   plt.xlabel('Predicted label')
35   return plt
36 cm_plot(y_test,yp).show()# 显示混淆矩阵可视化结果
37 score  = model.evaluate(x_test,y_test,batch_size=128)  # 模型评估
38 print(score)
1 输出结果: 0.12582740187644958

SVM支持向量机

 1 import pandas as pd
 2 import numpy as np
 3 from sklearn import svm
 4 from sklearn.metrics import accuracy_score
 5 from sklearn.metrics import confusion_matrix
 6 from matplotlib import pyplot as plt
 7 import seaborn as sns
 8 from sklearn.model_selection import train_test_split
 9 data_load = "bankloan.xls"
10 data = pd.read_excel(data_load)
11 data.describe()
12 data.columns
13 data.index
14 ## 转为np 数据切割
15 X = np.array(data.iloc[:,0:-1])
16 y = np.array(data.iloc[:,-1])
17 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, train_size=0.8, test_size=0.2, shuffle=True)
18 svm = svm.SVC()
19 svm.fit(X_test,y_test)
20 y_pred = svm.predict(X_test)
21 accuracy_score(y_test, y_pred)
22 print(accuracy_score(y_test, y_pred))
23 cm = confusion_matrix(y_test, y_pred)
24 heatmap = sns.heatmap(cm, annot=True, fmt='d')
25 heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right')
26 heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right')
27 plt.ylabel("true label")
28 plt.xlabel("predict label")
29 plt.show()
输出结果: 0.7857142857142857

 

决策树

 1 import pandas as pd
 2 import pydotplus
 3 from sklearn.tree import DecisionTreeClassifier as DTC
 4 from sklearn.tree import export_graphviz
 5 from IPython.display import Image
 6 from sklearn import tree
 7 
 8 # 参数初始化
 9 filename = 'bankloan.xls'
10 data = pd.read_excel(filename)  # 导入数据
11 
12 # 数据是类别标签,要将它转换为数据
13 x = data.iloc[:,:8].astype(int)
14 y = data.iloc[:,8].astype(int)
15 
16 dtc = DTC(criterion='entropy')  # 建立决策树模型,基于信息熵
17 dtc.fit(x, y)  # 训练模型
18 
19 # 导入相关函数,可视化决策树。
20 x = pd.DataFrame(x)
21 with open("tree.dot", 'w') as f:
22     export_graphviz(dtc, feature_names = x.columns, out_file = f)
23     f.close()
24 dot_data = tree.export_graphviz(dtc, out_file=None,  #regr_1 是对应分类器
25                          feature_names=data.columns[:8],   #对应特征的名字
26                          class_names=data.columns[8],    #对应类别的名字
27                          filled=True, rounded=True,
28                          special_characters=True)
29 
30 graph = pydotplus.graph_from_dot_data(dot_data)
31 graph.write_png('example2.png')    #保存图像
32 Image(graph.create_png())

 

posted @ 2022-03-29 22:46  SERENE-ZOU  阅读(62)  评论(0)    收藏  举报