会员
众包
新闻
博问
闪存
赞助商
HarmonyOS
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
聚沙成塔,水滴石穿
博客园
首页
新随笔
联系
订阅
管理
上一页
1
2
3
4
5
6
7
···
22
下一页
2020年2月25日
数据集
摘要: kitti 3d目标检测: nuscenes
阅读全文
posted @ 2020-02-25 17:58 core!
阅读(430)
评论(0)
推荐(0)
2020年2月16日
Deeplab
摘要: Deeplab系列是谷歌团队的分割网络. DeepLab V1 CNN处理图像分割的两个问题 下采样导致信息丢失 maxpool造成feature map尺寸减小,细节信息丢失. 空间不变性 所谓空间不变性,就是说比如一张狗的图,狗位于图片正中还是某一个角,都不影响模型识别出这是一个狗. 即模型对于
阅读全文
posted @ 2020-02-16 21:11 core!
阅读(1533)
评论(0)
推荐(0)
2020年2月13日
全卷积网络FCN
摘要: 全卷积网络FCN fcn是深度学习用于图像分割的鼻祖.后续的很多网络结构都是在此基础上演进而来. 图像分割即像素级别的分类. 语义分割的基本框架: 前端fcn(以及在此基础上的segnet,deconvnet,deeplab等) + 后端crf/mrf FCN是分割网络的鼻祖,后面的很多网络都是在此
阅读全文
posted @ 2020-02-13 20:32 core!
阅读(1534)
评论(0)
推荐(0)
2020年2月6日
从头学pytorch(二十一):全连接网络dense net
摘要: DenseNet "论文传送门" ,这篇论文是CVPR 2017的最佳论文. "resnet一文" 里说了,resnet是具有里程碑意义的.densenet就是受resnet的启发提出的模型. resnet中是把不同层的feature map相应元素的值直接相加.而densenet是将channel
阅读全文
posted @ 2020-02-06 18:44 core!
阅读(7881)
评论(0)
推荐(2)
2020年1月19日
文章索引
摘要: 作为一只半路出家的野生深度学习程序猿,没人指导,一切都靠自己摸索,在学习实践的路上走过不少弯路. 我正式读的第一篇论文是目标检测网络yolov3的论文.yolov3原生代码是作者用纯c手撸的,叫做darknet,其实也算一个框架,游离于主流深度学习框架之外.这是项目地址. 最近跟着这本书,重新学习p
阅读全文
posted @ 2020-01-19 09:58 core!
阅读(826)
评论(0)
推荐(1)
2020年1月17日
从头学pytorch(二十):残差网络resnet
摘要: 残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路是加宽每一个layer,resnet的思路是加深layer. 论文地址: 论文里指出,随着网络深度的
阅读全文
posted @ 2020-01-17 16:57 core!
阅读(5236)
评论(1)
推荐(0)
2020年1月16日
从头学pytorch(十九):批量归一化batch normalization
摘要: 批量归一化 论文地址: 批量归一化基本上是现在模型的标配了 . 说实在的,到今天我也没搞明白batch normalize能够使得模型训练更稳定的底层原因,要彻底搞清楚,涉及到很多凸优化的理论,需要非常扎实的数学基础才行. 目前为止,我理解的批量归一化即把每一层输入的特征,统一变换到统一的尺度上来,
阅读全文
posted @ 2020-01-16 16:38 core!
阅读(4205)
评论(0)
推荐(2)
2020年1月15日
从头学pytorch(十八):GoogLeNet
摘要: GoogLeNet GoogLeNet和vgg分别是2014的ImageNet挑战赛的冠亚军.GoogLeNet则做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比AlexNet和VGG小很多,GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VGGNe
阅读全文
posted @ 2020-01-15 13:48 core!
阅读(843)
评论(0)
推荐(2)
2020年1月14日
从头学pytorch(十七):网络中的网络NIN
摘要: 网络中的网络NIN 之前介绍的LeNet,AlexNet,VGG设计思路上的共同之处,是加宽(增加卷积层的输出的channel数量)和加深(增加卷积层的数量),再接全连接层做分类. NIN提出了一个不同的思路,串联多个由卷积层和'全连接层'(1x1卷积)构成的小网络来构建一个深层网络. 论文地址:
阅读全文
posted @ 2020-01-14 14:32 core!
阅读(1709)
评论(0)
推荐(1)
2020年1月10日
从头学pytorch(十六):VGG NET
摘要: VGG AlexNet在Lenet的基础上增加了几个卷积层,改变了卷积核大小,每一层输出通道数目等,并且取得了很好的效果.但是并没有提出一个简单有效的思路. VGG做到了这一点,提出了可以通过重复使⽤简单的基础块来构建深度学习模型的思路. 论文地址: vgg的结构如下所示: 上图给出了不同层数的vg
阅读全文
posted @ 2020-01-10 22:54 core!
阅读(1619)
评论(0)
推荐(0)
上一页
1
2
3
4
5
6
7
···
22
下一页
公告