第三周作业
第一部分——飞机客户数据分析预测
代码一:读取数据
import pandas as pd
datafile='D:/Jupyter/a/air_data.csv'
resultfile='D:/Jupyter/a/explore.csv'
data = pd.read_csv(datafile,encoding = 'utf-8')
explore = data.describe(percentiles = [],include = 'all').T
explore['null'] = len(data)-explore['count']
explore = explore[['null','max','min']]
explore.columns = [u'空值数',u'最大值',u'最小值']
explore.to_csv(resultfile)
print(explore)
空值数 最大值 最小值 MEMBER_NO 0.0 62988.0 1.0 FFP_DATE 0 NaN NaN FIRST_FLIGHT_DATE 0 NaN NaN GENDER 3 NaN NaN FFP_TIER 0.0 6.0 4.0 WORK_CITY 2269 NaN NaN WORK_PROVINCE 3248 NaN NaN WORK_COUNTRY 26 NaN NaN AGE 420.0 110.0 6.0 LOAD_TIME 0 NaN NaN FLIGHT_COUNT 0.0 213.0 2.0 BP_SUM 0.0 505308.0 0.0 EP_SUM_YR_1 0.0 0.0 0.0 EP_SUM_YR_2 0.0 74460.0 0.0 SUM_YR_1 551.0 239560.0 0.0 SUM_YR_2 138.0 234188.0 0.0 SEG_KM_SUM 0.0 580717.0 368.0 WEIGHTED_SEG_KM 0.0 558440.14 0.0 LAST_FLIGHT_DATE 0 NaN NaN AVG_FLIGHT_COUNT 0.0 26.625 0.25 AVG_BP_SUM 0.0 63163.5 0.0 BEGIN_TO_FIRST 0.0 729.0 0.0 LAST_TO_END 0.0 731.0 1.0 AVG_INTERVAL 0.0 728.0 0.0 MAX_INTERVAL 0.0 728.0 0.0 ADD_POINTS_SUM_YR_1 0.0 600000.0 0.0 ADD_POINTS_SUM_YR_2 0.0 728282.0 0.0 EXCHANGE_COUNT 0.0 46.0 0.0 avg_discount 0.0 1.5 0.0 P1Y_Flight_Count 0.0 118.0 0.0 L1Y_Flight_Count 0.0 111.0 0.0 P1Y_BP_SUM 0.0 246197.0 0.0 L1Y_BP_SUM 0.0 259111.0 0.0 EP_SUM 0.0 74460.0 0.0 ADD_Point_SUM 0.0 984938.0 0.0 Eli_Add_Point_Sum 0.0 984938.0 0.0 L1Y_ELi_Add_Points 0.0 728282.0 0.0 Points_Sum 0.0 985572.0 0.0 L1Y_Points_Sum 0.0 728282.0 0.0 Ration_L1Y_Flight_Count 0.0 1.0 0.0 Ration_P1Y_Flight_Count 0.0 1.0 0.0 Ration_P1Y_BPS 0.0 0.999989 0.0 Ration_L1Y_BPS 0.0 0.999993 0.0 Point_NotFlight 0.0 140.0 0.0
代码二:分析数据并绘制基本图像
from datetime import datetime
import matplotlib.pyplot as plt
ffp=data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d'))
ffp_year=ffp.map(lambda x:x.year)
#绘制各年份会员入会人数直方图
fig=plt.figure(figsize=(8,5))
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']='False'
plt.hist(ffp_year,bins='auto',color='#0504aa')
plt.xlabel('年份')
plt.ylabel('入会人数')
plt.title('各年份会员入会人数(3134)',fontsize=15)
plt.show()
plt.close
#提取会员不同性别人数
male=pd.value_counts(data['GENDER'])['男']
female=pd.value_counts(data['GENDER'])['女']
#绘制会员性别比例饼图
fig=plt.figure(figsize=(10,6))
plt.pie([male,female],labels=['男','女'],colors=['lightskyblue','lightcoral'],autopct='%1.1f%%')
plt.title('会员性别比例(3135)',fontsize=15)
plt.show()
plt.close()
#提取不同级别会员人数
lv_four=pd.value_counts(data['FFP_TIER'])[4]
lv_five=pd.value_counts(data['FFP_TIER'])[5]
lv_six=pd.value_counts(data['FFP_TIER'])[6]
#绘制会员各级别人数条形图
fig=plt.figure(figsize=(8,5))
plt.bar(x=range(3),height=[lv_four,lv_five,lv_six],width=0.4,alpha=0.8,color='skyblue')
plt.xticks([index for index in range(3)],['4','5','6'])
plt.xlabel('会员等级')
plt.ylabel('会员人数')
plt.title('会员各级别人数(3134)',fontsize=15)
plt.show()
plt.close
#提取会员年龄
age=data['AGE'].dropna()
age=age.astype('int64')
#绘制会员年龄分布箱型图
fig=plt.figure(figsize=(5,10))
plt.boxplot(age,
patch_artist=True,
labels=['会员年龄'],
boxprops={'facecolor':'lightblue'})
plt.title('会员年龄分布箱型图(3134)',fontsize=15)
plt.grid(axis='y')
plt.show()
plt.close()




lte=data['LAST_TO_END']
fc=data['FLIGHT_COUNT']
sks=data['SEG_KM_SUM']
#绘制最后乘机至结束时长箱型图
fig=plt.figure(figsize=(5,8))
plt.boxplot(lte,
patch_artist=True,
labels=['时长'],
boxprops={'facecolor':'lightblue'})
plt.title('会员最后乘机至结束时长的分布箱型图(3134)',fontsize=15)
plt.grid(axis='y')
plt.show()
plt.close
#绘制客户飞行次数箱型图
fig=plt.figure(figsize=(5,8))
plt.boxplot(fc,
patch_artist=True,
labels=['飞行次数'],
boxprops={'facecolor':'lightblue'})
plt.title('会员飞行次数的分布箱型图(3134)',fontsize=15)
plt.grid(axis='y')
plt.show()
plt.close
#绘制客户总飞行公里数箱型图
fig=plt.figure(figsize=(5,10))
plt.boxplot(sks,
patch_artist=True,
labels=['总飞行公里数'],
boxprops={'facecolor':'lightblue'})
plt.title('客户总飞行公里的数箱型图(3134)',fontsize=15)
plt.grid(axis='y')
plt.show()
plt.close



#积分信息类别
#提取会员积分兑换次数
ec=data['EXCHANGE_COUNT']
#绘制会员兑换积分次数直方图
fig=plt.figure(figsize=(8,5))
plt.hist(ec,bins=5,color='#0504aa')
plt.xlabel('兑换次数')
plt.ylabel('会员人数')
plt.title('会员兑换积分次数直方图(3134)',fontsize=10)
plt.show()
plt.close
#提取会员总累计积分
ps=data['Points_Sum']
#绘制会员总累计积分箱型图
fig=plt.figure(figsize=(5,8))
plt.boxplot(ps,
patch_artist=True,
labels=['总累计积分'],
boxprops={'facecolor':'lightblue'})
plt.title('客户总累计积分箱型图(3134)',fontsize=15)
plt.grid(axis='y')
plt.show()
plt.close


#提取属性并合并为新数据集
data_corr=data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END','SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']]
age1=data['AGE'].fillna(0)
data_corr['AGE']=age1.astype('int64')
data_corr['ffp_year']=ffp_year
#计算相关性矩阵
dt_corr=data_corr.corr(method='pearson')
print('相关性矩阵为:\n',dt_corr)
#绘制热力图
import seaborn as sns
plt.subplots(figsize=(15,15))
sns.heatmap(dt_corr,annot=True,vmax=1,square=True,cmap='Blues')
plt.show()
plt.close
相关性矩阵为:
FFP_TIER FLIGHT_COUNT LAST_TO_END SEG_KM_SUM \
FFP_TIER 1.000000 0.582447 -0.206313 0.522350
FLIGHT_COUNT 0.582447 1.000000 -0.404999 0.850411
LAST_TO_END -0.206313 -0.404999 1.000000 -0.369509
SEG_KM_SUM 0.522350 0.850411 -0.369509 1.000000
EXCHANGE_COUNT 0.342355 0.502501 -0.169717 0.507819
Points_Sum 0.559249 0.747092 -0.292027 0.853014
AGE 0.076245 0.075309 -0.027654 0.087285
ffp_year -0.116510 -0.188181 0.117913 -0.171508
EXCHANGE_COUNT Points_Sum AGE ffp_year
FFP_TIER 0.342355 0.559249 0.076245 -0.116510
FLIGHT_COUNT 0.502501 0.747092 0.075309 -0.188181
LAST_TO_END -0.169717 -0.292027 -0.027654 0.117913
SEG_KM_SUM 0.507819 0.853014 0.087285 -0.171508
EXCHANGE_COUNT 1.000000 0.578581 0.032760 -0.216610
Points_Sum 0.578581 1.000000 0.074887 -0.163431
AGE 0.032760 0.074887 1.000000 -0.242579
ffp_year -0.216610 -0.163431 -0.242579 1.000000

import numpy as np
import pandas as pd
datafile ='D:/Jupyter/a/air_data.csv'
cleanedfile='D:/Jupyter/a/data_cleaned.csv'
#读取数据
airline_data=pd.read_csv(datafile,encoding='utf-8')
print('原始数据的形状为:',airline_data.shape)
#去除票价为空的记录
airline_notnull=airline_data.loc[airline_data['SUM_YR_1'].notnull()&airline_data['SUM_YR_2'].notnull(),:]
print('删除缺失记录后数据的形状为:',airline_notnull.shape)
#只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录
index1=airline_notnull['SUM_YR_1']!=0
index2=airline_notnull['SUM_YR_2']!=0
index3=(airline_notnull['SEG_KM_SUM']>0)&(airline_notnull['avg_discount']!=0)
index4=airline_notnull['AGE']>100#去除年龄大于100的记录
airline=airline_notnull[(index1|index2)&index3&~index4]
print('数据清洗后数据的形状为:',airline.shape)
airline.to_csv(cleanedfile)
原始数据的形状为: (62988, 44) 删除缺失记录后数据的形状为: (62299, 44) 数据清洗后数据的形状为: (62043, 44)
代码七
import pandas as pd
import numpy as np
#读取数据清洗后的数据
cleanedfile='D:/Jupyter/a/data_cleaned.csv'
airline=pd.read_csv(cleanedfile,encoding='utf-8')
#选取需求属性
airline_selection=airline[['FFP_DATE','LOAD_TIME','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']]
print('筛选的属性前5行为:\n',airline_selection.head())
筛选的属性前5行为:
FFP_DATE LOAD_TIME LAST_TO_END FLIGHT_COUNT SEG_KM_SUM avg_discount
0 2006/11/2 2014/3/31 1 210 580717 0.961639
1 2007/2/19 2014/3/31 7 140 293678 1.252314
2 2007/2/1 2014/3/31 11 135 283712 1.254676
3 2008/8/22 2014/3/31 97 23 281336 1.090870
4 2009/4/10 2014/3/31 5 152 309928 0.970658
代码八
import pandas as pd
import numpy as np
#读取数据清洗后的数据
cleanedfile='D:/Jupyter/a/data_cleaned.csv'
airline=pd.read_csv(cleanedfile,encoding='utf-8')
#选取需求属性
airline_selection=airline[['FFP_DATE','LOAD_TIME','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']]
print('筛选的属性前5行为:\n',airline_selection.head())
筛选的属性前5行为:
FFP_DATE LOAD_TIME LAST_TO_END FLIGHT_COUNT SEG_KM_SUM avg_discount
0 2006/11/2 2014/3/31 1 210 580717 0.961639
1 2007/2/19 2014/3/31 7 140 293678 1.252314
2 2007/2/1 2014/3/31 11 135 283712 1.254676
3 2008/8/22 2014/3/31 97 23 281336 1.090870
4 2009/4/10 2014/3/31 5 152 309928 0.970658
代码九
#K-Means聚类标准化后的数据
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
#读取标准化后的数据
airline_scale=np.load('D:/Jupyter/a/airline_scale.npz')['arr_0']
k=5 #确定聚类中心
#构建模型,随机种子设为123
kmeans_model=KMeans(n_clusters=k,random_state=123)
fit_kmeans=kmeans_model.fit(airline_scale) #模型训练
#查看聚类结果
kmeans_cc=kmeans_model.cluster_centers_#聚类中心
print('各类聚类中心为:\n',kmeans_cc)
kmeans_labels=kmeans_model.labels_#样本的类别标签
print('各样本的类别标签为:\n',kmeans_labels)
r1=pd.Series(kmeans_model.labels_).value_counts()#统计不同类别样本的数目
print('最终每个类别的数目为:\n',r1)
#输出聚类分群的结果
cluster_center=pd.DataFrame(kmeans_model.cluster_centers_,\
columns=['ZL','ZR','ZF','ZM','ZC'])#将聚类中心放在数据框中
cluster_center.index=pd.DataFrame(kmeans_model.labels_ ).\
drop_duplicates().iloc[:,0]
print(cluster_center)

代码十
%matplotlib inline
import matplotlib.pyplot as plt
labels=['ZL','ZR','ZF','ZM','ZC']
legen=['客户群'+str(i+1) for i in cluster_center.index]#客户群命名
lstype=['-','--',(0,(3,5,1,5,1,5)),':','-.']
kinds=list(cluster_center.iloc[:,0])
#由于雷达图要保证数据闭合,因此再添加L列,并转换为np.ndarry
cluster_center=pd.concat([cluster_center,cluster_center[['ZL']]],axis=1)
centers=np.array(cluster_center.iloc[:,0:])
#分割圆周长,并让其闭合
n=len(labels)
angle=np.linspace(0,2*np.pi,n,endpoint=False)
angle=np.concatenate((angle,[angle[0]]))
feature=np.concatenate((feature,[feature[0]]))
#绘图
fig=plt.figure(figsize=(8,6))
ax=fig.add_subplot(111,polar=True)
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
#画线
for i in range(len(kinds)):
ax.plot(angle,centers[i],linestyle=lstype[i],linewidth=2,label=kinds[i])
#添加属性标签
ax.set_thetagrids(angle* 180/np.pi, labels)
plt.title('客户特征分析雷达图(3135)',fontsize=15)
plt.legend(legen)
plt.show()
plt.close

第二部分:电信客户流失分析预测
代码1:读取并简单分析数据
import pandas as pd
data=pd.read_csv('D:D:/Jupyter/a/WA_Fn-UseC_-Telco-Customer-Churn.csv')# 加载数据
data.shape # 查看数据大小

data.dtypes# 查看数据类型

data.info() # 打印摘要

data.describe() # 描述性统计信息

代码2:客户流失数据分析
User_info=data.groupby(by="Churn")["Churn"].count() User_info=pd.DataFrame(User_info) User_info

plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']='False'
#提取会员不同性别人数
male=pd.value_counts(data['gender'])['Female']
female=pd.value_counts(data['gender'])['Male']
#绘制会员性别比例饼图
fig=plt.figure(figsize=(10,6))
plt.pie([male,female],labels=['男','女'],colors=['lightskyblue','lightcoral'],autopct='%1.1f%%')
plt.title(fontsize=15)
plt.show()
plt.close()

代码4:处理缺失值和归一化处理
#TotalCharges表示总费用,这里为对象类型,需要转换为float类型 ''' convert_numeric=True表示强制转换数字(包括字符串),不可转换为NaN---已被弃用 您可以根据需要替换所有非数字值,以NaN使用with函数中的apply列,然后替换为by 并将所有值最后替换为s by : df to_numeric 0 fillna int astype ''' data['TotalCharges']=data['TotalCharges'].apply(pd.to_numeric, errors='coerce').fillna(0).astype(int) print(data['TotalCharges'].dtypes) # print(pd.isnull(data['TotalCharges']).sum()) #再次查找是否存在缺失值 #处理缺失值 print(data.dropna(inplace=True)) #删除掉缺失值所在的行 print(data.shape) #数据归一化处理 #对Churn列中的YES和No分别用1和0替换,方便后续处理 data['Churn'].replace(to_replace='Yes',value=1,inplace=True) data['Churn'].replace(to_replace='No',value=0,inplace=True) print(data['Churn'].head())

代码5:绘制客户流失情况饼图
churnvalue=data[ "Churn" ].value_counts() labels=data["Churn"].value_counts().index rcParams["figure.figsize"]=6,6 plt.pie(churnvalue,labels=labels,colors=["blue","yellow"],explode=(0.1,0),autopct='%1.1f', shadow=True) plt.title(fontsize=15) plt.show()
代码6:特征值
charges=telcon.iloc[:,1:20] # #对特征进行编码 # #离散特征的编码分为两种情况: # #1.离散特征的取值之间没有太大意义,比如color:[red,blue],那么就使用one-hot编码 # #2.离散特征的取值有大小意义,比如size:[X,XL,XXL],那么就使用数值的映射【X:1,XL:2,XXL:3】 corrdf=charges.apply(lambda x:pd.factorize(x)[0]) print(corrdf.head())


浙公网安备 33010602011771号