6

以下是提取的公式及对应序号:

6.2 基于线弹性的应力集中

  • 椭圆孔方程:\(\frac{x^{2}}{c^{2}}+\frac{y^{2}}{b^{2}}=1\)(6.2.1)
  • 曲率半径:\(\rho=\frac{b^{2}}{c}\)(6.2.2)
  • 应力解:\(\sigma_{yy}(x=\pm c, y=0)=\sigma_{\infty}\left(1+\frac{2c}{b}\right)\)(6.2.3)
  • 应力解(改写):\(\sigma_{yy}(x=\pm c, y=0)=\sigma_{\infty}\left(1+2\sqrt{\frac{c}{\rho}}\right)\)(6.2.4)
  • 应力集中系数:\(K_{\mathrm{t}}=\frac{\sigma_{yy}(x=\pm c, y=0)}{\sigma_{\infty}}=1+2\sqrt{\frac{c}{\rho}}\)(6.2.5)
  • 圆孔归一化径向应力:\(\tilde{\sigma}_{r}=\frac{\sigma_{r}}{\sigma_{\infty}}=\frac{1}{2}\left(1-\frac{a^{2}}{r^{2}}\right)-\frac{\cos 2\theta}{2}\left(\frac{3a^{4}}{r^{4}}-\frac{4a^{2}}{r^{2}}+1\right)\)(6.2.6)
  • 圆孔归一化切向应力:\(\tilde{\sigma}_{r\theta}=\frac{\sigma_{r\theta}}{\sigma_{\infty}}=-\frac{\sin 2\theta}{2}\left(\frac{3a^{4}}{r^{4}}-\frac{2a^{2}}{r^{2}}-1\right)\)(6.2.7)
  • 圆孔归一化周向应力:\(\tilde{\sigma}_{\theta\theta}=\frac{\sigma_{\theta\theta}}{\sigma_{\infty}}=\frac{1}{2}\left(1+\frac{a^{2}}{r^{2}}\right)+\frac{\cos 2\theta}{2}\left(\frac{3a^{4}}{r^{4}}+1\right)\)(6.2.8)

6.3 格里菲斯的脆性材料断裂理论

  • 潜能:\(\Phi=-\frac{\sigma^{2}}{2E}V-\frac{\sigma^{2}c^{2}}{\pi E}t\)(6.3.1)
  • 单位裂纹面积能量释放率:\(-\frac{\partial \Phi}{\partial A_{c}}=-\frac{1}{2t}\frac{\mathrm{d}\Phi}{\mathrm{d}c}=\frac{\pi\sigma^{2}c}{E}\)(6.3.2)
  • 断裂条件:\(-\frac{\partial \Phi}{\partial A_{c}}=\frac{\pi\sigma^{2}c}{E}=2\gamma\)(6.3.3)
  • 断裂应力:\(\sigma_{\mathrm{f}}=\sqrt{\frac{2\gamma E}{\pi c}}\)(6.3.4)

6.4 基于线弹性断裂力学(LEFM)的断裂参数

  • 平面问题平衡方程1:\(\frac{\partial \sigma_{rr}}{\partial r}+\frac{1}{r}\frac{\partial \sigma_{r\theta}}{\partial \theta}+\frac{\sigma_{rr}-\sigma_{\theta\theta}}{r}=0\)(6.4.1)
  • 平面问题平衡方程2:\(\frac{\partial \sigma_{r\theta}}{\partial r}+\frac{1}{r}\frac{\partial \sigma_{\theta\theta}}{\partial \theta}+\frac{2\sigma_{rr}}{r}=0\)(6.4.2)
  • 裂纹面应力边界条件:当\(\theta=\pm\pi\)时,\(\sigma_{\theta\theta}=\sigma_{r\theta}=0\)(6.4.3)
  • 协调方程:\(\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial \theta^{2}}\right)(\sigma_{rr}+\sigma_{\theta\theta})=0\)(6.4.4)
  • 应力分函数(\(r,\theta\)):\(\sigma_{rr}=Cr^{\lambda}\tilde{\sigma}_{rr}(\theta)\)(6.4.5);\(\sigma_{\theta\theta}=Cr^{\lambda}\tilde{\sigma}_{\theta\theta}(\theta)\)(6.4.6);\(\sigma_{r\theta}=Cr^{\lambda}\tilde{\sigma}_{r\theta}(\theta)\)(6.4.7)
  • I型应力强度因子定义:\(K_{\mathrm{I}}=\lim_{r\rightarrow0}\sqrt{2\pi r}\sigma_{\theta\theta}(r,\theta=0)\)(6.4.8)
  • II型应力强度因子定义:\(K_{\mathrm{II}}=\lim_{r\rightarrow0}\sqrt{2\pi r}\sigma_{r\theta}(r,\theta=0)\)(6.4.9)
  • I型渐近应力(周向):\(\sigma_{\theta\theta}=\frac{K_{\mathrm{I}}}{\sqrt{2\pi r}}\frac{\cos^{3}\frac{\theta}{2}}{2}\)(6.4.10)
  • I型渐近应力(径向):\(\sigma_{rr}=\frac{K_{\mathrm{I}}}{\sqrt{2\pi r}}\frac{\cos\frac{\theta}{2}}{2}\left(1+\sin^{2}\frac{\theta}{2}\right)\)(6.4.11)
  • I型渐近应力(切向):\(\sigma_{r\theta}=\frac{K_{\mathrm{I}}}{\sqrt{2\pi r}}\frac{\sin\frac{\theta}{2}\cos^{2}\frac{\theta}{2}}{2}\)(6.4.12)
  • II型渐近应力(周向):\(\sigma_{\theta\theta}=\frac{K_{\mathrm{II}}}{\sqrt{2\pi r}}\left(-3\sin\frac{\theta}{2}\cos^{2}\frac{\theta}{2}\right)\)(6.4.13)
  • II型渐近应力(径向):\(\sigma_{rr}=\frac{K_{\mathrm{II}}}{\sqrt{2\pi r}}\frac{\sin\frac{\theta}{2}}{2}\left(1-3\sin^{2}\frac{\theta}{2}\right)\)(6.4.14)
  • II型渐近应力(切向):\(\sigma_{r\theta}=\frac{K_{\mathrm{II}}}{\sqrt{2\pi r}}\frac{\cos\frac{\theta}{2}}{2}\left(1-3\sin^{2}\frac{\theta}{2}\right)\)(6.4.15)
  • III型应力强度因子定义:\(K_{\mathrm{III}}=\lim_{r\rightarrow0}\sqrt{2\pi r}\sigma_{r\theta}(r,\theta=0)\)(6.4.16)
  • III型渐近应力(切向):\(\sigma_{r\theta}=\frac{K_{\mathrm{III}}}{\sqrt{2\pi r}}\frac{\cos\frac{\theta}{2}}{2}\)(6.4.18)
  • III型渐近应力(径向):\(\sigma_{rr}=\frac{K_{\mathrm{III}}}{\sqrt{2\pi r}}\frac{\sin\frac{\theta}{2}}{2}\)(6.4.17)
  • \(K_{\mathrm{I}}\)量纲:\(\left[K_{\mathrm{I}}\right]=\frac{[F]^{1/2}}{[L]}[L]^{1/2}\)(6.4.19)
  • 二维无限体中心裂纹\(K_{\mathrm{I}}\)\(K_{\mathrm{I}}=\sigma\sqrt{\pi a}\)(6.4.20)
  • 二维半无限体边缘裂纹\(K_{\mathrm{I}}\)\(K_{\mathrm{I}}=1.12\sigma\sqrt{\pi a}\)(6.4.21)
  • 三维无限体圆盘状裂纹\(K_{\mathrm{I}}\)\(K_{\mathrm{I}}=\frac{2}{\pi}\sigma\sqrt{\pi a}\)(6.4.22)
  • 有限尺寸裂纹板\(K_{\mathrm{I}}\)\(K_{\mathrm{I}}=F(\alpha)S_{\mathrm{g}}\sqrt{\pi a}\)(6.4.23)
  • 拉伸中心裂纹板\(S_{\mathrm{g}}\)\(S_{\mathrm{g}}=\frac{P}{2bt}\)(6.4.24)
  • 拉伸中心裂纹板\(F(\alpha)\)\(F(\alpha)=\frac{1-0.5\alpha+0.326\alpha^{2}}{\sqrt{1-\alpha}}\)\(h/b\geq1.5\))(6.4.25)
  • 拉伸边缘裂纹板\(S_{\mathrm{g}}\)\(S_{\mathrm{g}}=\frac{P}{bt}\)(6.4.26)
  • 拉伸边缘裂纹板\(F(\alpha)\)\(F(\alpha)=0.265(1-\alpha)^{4}+\frac{0.857+0.265\alpha}{(1-\alpha)^{3/2}}\)\(h/b\geq1.0\))(6.4.27)
  • 弯曲边缘裂纹板\(S_{\mathrm{g}}\)\(S_{\mathrm{g}}=\frac{6M}{b^{2}t}\)(6.4.28)
  • 弯曲边缘裂纹板\(F(\alpha)\)\(F(\alpha)=\sqrt{\frac{2}{\pi\alpha}}\tan\frac{\pi\alpha}{2}\left[\frac{0.923+0.199\left(1-\sin\frac{\pi\alpha}{2}\right)^{4}}{\cos\frac{\pi\alpha}{2}}\right]\)(6.4.29)
  • 孔萌生小裂纹\(K_{\mathrm{A}}\)\(K_{\mathrm{A}}=1.12K_{\mathrm{t}}S\sqrt{\pi l}\)(6.4.30)
  • 孔萌生大裂纹\(K_{\mathrm{B}}\)\(K_{\mathrm{B}}=FS\sqrt{\pi a}\)(6.4.31)
  • 孔萌生裂纹\(K\)\(K=F(d)S\sqrt{\pi l}\)(6.4.32)
  • 孔萌生裂纹\(F(d)\)\(F(d)=0.5(3-d)\left[1+1.243(1-d)^{3}\right]\)(6.4.33)
  • 孔萌生裂纹\(d\)\(d=\frac{l}{a}=\frac{l}{c+l}\)(6.4.34)
  • 非奇异裂纹尖端渐近场:\(\sigma_{ij}=\frac{K_{\mathrm{I}}}{\sqrt{2\pi r}}\tilde{\sigma}_{ij}^{\mathrm{I}}(\theta)+\frac{K_{\mathrm{II}}}{\sqrt{2\pi r}}\tilde{\sigma}_{ij}^{\mathrm{II}}(\theta)+\frac{K_{\mathrm{III}}}{\sqrt{2\pi r}}\tilde{\sigma}_{ij}^{\mathrm{III}}(\theta)+\delta_{i1}\delta_{j1}T+\delta_{i2}\delta_{j2}T+\delta_{i3}\delta_{j3}S+\cdots\)(6.4.35)
  • 双轴应力下\(K_{\mathrm{I}}\)\(K_{\mathrm{I}}=\sigma\sqrt{\pi a}\)(6.4.36)
  • \(T\)应力与\(K_{\mathrm{I}}\)关系:\(\frac{T}{K_{\mathrm{I}}}=\frac{R-1}{\sqrt{\pi a}}\)(6.4.37)
  • \(T\)应力简化:\(T=\sigma(R-1)\)(6.4.38)
  • 圆盘状裂纹\(K_{\mathrm{I}}\)\(K_{\mathrm{I}}=\frac{2}{\pi}S\sqrt{\pi a}\)(6.4.39)
  • 矩形杆拉伸\(S_{\mathrm{t}}\)\(S_{\mathrm{t}}=\frac{P}{2bt}\)(6.4.40)
  • 矩形杆弯曲\(S_{\mathrm{b}}\)\(S_{\mathrm{b}}=\frac{3M}{bt^{2}}\)(6.4.41)
  • 矩形杆小表面裂纹\(K_{\mathrm{I}}\)(拉伸):\(K_{\mathrm{I}}=0.728S_{\mathrm{t}}\sqrt{\pi a}\)(6.4.42)
  • 矩形杆小表面裂纹\(K_{\mathrm{I}}\)(弯曲):\(K_{\mathrm{I}}=0.728S_{\mathrm{b}}\sqrt{\pi a}\)(6.4.43)
  • 圆棒拉伸\(S_{\mathrm{t}}\)\(S_{\mathrm{t}}=\frac{4P}{\pi d^{2}}\)(6.4.44)
  • 圆棒弯曲\(S_{\mathrm{b}}\)\(S_{\mathrm{b}}=\frac{32M}{\pi d^{3}}\)(6.4.45)
  • 圆棒小表面裂纹\(K_{\mathrm{I}}\)(拉伸):\(K_{\mathrm{I}}=0.728S_{\mathrm{t}}\sqrt{\pi a}\)(6.4.46)
  • 圆棒小表面裂纹\(K_{\mathrm{I}}\)(弯曲):\(K_{\mathrm{I}}=0.728S_{\mathrm{b}}\sqrt{\pi a}\)(6.4.47)
  • 椭圆形裂纹\(K\)\(K=S\sqrt{\frac{\pi a}{Q}}f_{\phi}\)(6.4.48)
  • 椭圆形裂纹\(f_{\phi}\)\(f_{\phi}=\left[\left(\frac{a}{c}\right)^{2}\cos^{2}\phi+\sin^{2}\phi\right]^{1/4}\)\(\frac{a}{c}\leq1\))(6.4.49)
  • 椭圆形裂纹\(\sqrt{Q}\)\(\sqrt{Q}=E(k)=\int_{0}^{\pi/2}\sqrt{1-k^{2}\sin^{2}\beta}\mathrm{d}\beta\)(6.4.50)
  • 椭圆形裂纹\(k^{2}\)\(k^{2}=1-\left(\frac{a}{c}\right)^{2}\)(6.4.51)
  • 椭圆形裂纹\(\sqrt{Q}\)近似:\(\sqrt{Q}=E(k)\approx\left[1+1.464\left(\frac{a}{c}\right)^{1.65}\right]^{1/2}\)(6.4.52)
  • 椭圆形裂纹\(K_{\mathrm{D}}\)(D点):\(K_{\mathrm{D}}=S\frac{\sqrt{\pi a}}{E(k)}\)(6.4.53)
  • 椭圆形裂纹\(K_{\mathrm{E}}\)(E点):\(K_{\mathrm{E}}=S\frac{\sqrt{\pi a}}{E(k)}\sqrt{\frac{a}{c}}\)(6.4.54)

6.5 线弹性断裂力学(LEFM)塑性区域的尺寸和要求

  • 面外切应力:\(\sigma_{xz}=\sigma_{yz}=0\)(6.5.1)
  • 平面应力面外正应力:\(\sigma_{zz}=0\)(6.5.2)
  • 裂纹尖端正应力(\(\theta=0\)):\(\sigma_{rr}=\sigma_{\theta\theta}=\frac{K_{\mathrm{I}}}{\sqrt{2\pi r}}\)(6.5.3)
  • 裂纹尖端切应力(\(\theta=0\)):\(\sigma_{r\theta}=0\)(6.5.4)
  • 米塞斯屈服准则:\(\sigma_{0}^{2}=\frac{1}{2}\left[(\sigma_{rr}-\sigma_{\theta\theta})^{2}+(\sigma_{\theta\theta}-\sigma_{zz})^{2}+(\sigma_{zz}-\sigma_{rr})^{2}\right]\)(6.5.5)
  • 平面应力屈服准则(\(\theta=0\)):\(\sigma_{0}^{2}=\sigma_{\theta\theta}^{2}\)(6.5.6)
  • 平面应力I型裂纹屈服:\(\sigma_{\theta\theta}=\sigma_{0}\)(6.5.7)
  • 平面应力塑性区域尺寸(\(r=r_{0\mathrm{y}}\)):\(\sigma_{0}=\sigma_{\theta\theta}=\frac{K_{\mathrm{I}}}{\sqrt{2\pi r_{0\mathrm{y}}}}\)(6.5.8)
  • 平面应力塑性区域尺寸(整理):\(r_{0\mathrm{y}}=\frac{1}{2\pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\)(6.5.9)
  • 理想弹塑性材料塑性区域尺寸:\(2r_{0\mathrm{y}}=\frac{1}{\pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\)(6.5.10)
  • 平面应变面外正应力:\(\sigma_{zz}=\nu(\sigma_{rr}+\sigma_{\theta\theta})\)(6.5.11)
  • 平面应变裂纹尖端正应力(\(\theta=0\)):\(\sigma_{rr}=\sigma_{\theta\theta}=\frac{K_{\mathrm{I}}}{\sqrt{2\pi r}}\)(6.5.12)
  • 平面应变\(\sigma_{zz}\)\(\sigma_{zz}=2\nu\sigma_{\theta\theta}\)(6.5.13)
  • 平面应变屈服准则(\(\theta=0\)):\(\sigma_{0}^{2}=\left[(1-2\nu)\sigma_{\theta\theta}\right]^{2}\)(6.5.14)
  • 平面应变I型裂纹屈服:\(\sigma_{0}=(1-2\nu)\sigma_{\theta\theta}\)(6.5.15)
  • 平面应变\(\sigma_{\theta\theta}\)\(\sigma_{\theta\theta}=\frac{1}{1-2\nu}\sigma_{0}\)(6.5.16)
  • 平面应变塑性区域尺寸(\(r=r_{0\mathrm{y}}\)):\(\frac{\sigma_{0}}{1-2\nu}=\sigma_{\theta\theta}=\frac{K_{\mathrm{I}}}{\sqrt{2\pi r_{0\mathrm{y}}}}\)(6.5.17)
  • 平面应变塑性区域尺寸(整理):\(r_{0\mathrm{y}}=\frac{(1-2\nu)^{2}}{2\pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\)(6.5.18)
  • 理想弹塑性材料平面应变塑性区域尺寸:\(2r_{0\mathrm{y}}=\frac{(1-2\nu)^{2}}{\pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\)(6.5.19)
  • 欧文(Irwin)塑性区域尺寸:\(r_{0\mathrm{y}}=\frac{1}{6\pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\)(6.5.20);\(2r_{0\mathrm{y}}=\frac{1}{3\pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\)(6.5.21)
  • 圆柱坐标系米塞斯屈服准则:\(\sigma_{0}^{2}=\frac{1}{2}\left[(\sigma_{rr}-\sigma_{\theta\theta})^{2}+(\sigma_{\theta\theta}-\sigma_{zz})^{2}+(\sigma_{zz}-\sigma_{rr})^{2}\right]+3\sigma_{r\theta}^{2}\)(6.5.22)
  • 平面应力塑性区域尺寸(随\(\theta\)变化):\(r_{\mathrm{p}}(\theta)=\frac{1}{2\pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\left[\frac{1}{2}(1+\cos\theta)+\frac{3}{4}\sin^{2}\theta\right]\)(6.5.23)
  • 平面应变塑性区域尺寸(随\(\theta\)变化):\(r_{\mathrm{p}}(\theta)=\frac{1}{2\pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\left[\frac{1}{2}(1-2\nu)^{2}(1+\cos\theta)+\frac{3}{4}\sin^{2}\theta\right]\)(6.5.24)
  • LEFM要求(试样尺寸):\(a,b,h\geq\frac{4}{\pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\)(6.5.25)
  • 平面应变条件要求:\(t,a,h,b\geq2.5\left(\frac{K_{\mathrm{I}}}{\sigma_{0}}\right)^{2}\)(6.5.26)

以下是提取的公式及对应序号:

6.5 线弹性材料与非线弹性材料的能量释放率

  • 线弹性材料(I、II、III型组合加载)能量释放率:\(G=\frac{1-\nu^{2}}{E}(K_{\mathrm{I}}^{2}+K_{\mathrm{II}}^{2})+\frac{1+\nu^{2}}{E}K_{\mathrm{III}}^{2}\)(6.5.37)
  • 平面应力条件下能量释放率:\(G=\frac{1}{E}(K_{\mathrm{I}}^{2}+K_{\mathrm{II}}^{2})\)(6.5.38)

6.6 基于线弹性断裂力学的疲劳裂纹扩展

6.6.2 裂纹扩展特性

  • 最大应力强度因子:\(K_{\mathrm{max}}=FS_{\mathrm{max}}\sqrt{\pi a}\)(6.6.1)
  • 最小应力强度因子:\(K_{\mathrm{min}}=FS_{\mathrm{min}}\sqrt{\pi a}\)(6.6.2)
  • 应力强度因子变程:\(\Delta K=K_{\mathrm{max}}-K_{\mathrm{min}}\)(6.6.3)
  • 载荷比:\(R=\frac{S_{\mathrm{min}}}{S_{\mathrm{max}}}\)(6.6.4)
  • 应力强度因子比:\(R=\frac{K_{\mathrm{min}}}{K_{\mathrm{max}}}\)(6.6.5)
  • 帕里斯(Paris)公式:\(\frac{\mathrm{d}a}{\mathrm{d}N}=C(\Delta K)^{m}\)(6.6.6a)
  • 双对数拟合(线性形式):\(Y=A+BX\)(6.6.6b),其中\(Y=\lg(\frac{\mathrm{d}a}{\mathrm{d}N}),X=\lg(\Delta K),A=\lg C,B=m\)(6.6.6c)

6.6.3 沃克方程

  • 沃克等效应力强度因子变程:\(\Delta \bar{K}=K_{\mathrm{max}}(1-R)^{\gamma}\)(6.6.7)
  • 等效变程改写1:\(\Delta \bar{K}=\Delta K(1-R)^{\gamma-1}\)(6.6.8)
  • 等效变程改写2:\(\Delta \bar{K}=\frac{\Delta K}{(1-R)^{1-\gamma}}\)(6.6.9)
  • 帕里斯公式(沃克形式):\(\frac{\mathrm{d}a}{\mathrm{d}N}=C_{1}(\Delta \bar{K})^{m_{1}}\)(6.6.10)
  • \(R=0\)时等效变程:\(\Delta \bar{K}=\Delta K\)(6.6.11)
  • \(R=0\)时裂纹扩展率:\(\frac{\mathrm{d}a}{\mathrm{d}N}=C_{1}(\Delta K)^{m_{1}}\)(6.6.12)
  • \(R>0\)时裂纹扩展率:\(\frac{\mathrm{d}a}{\mathrm{d}N}=C_{1}\left(\frac{\Delta K}{(1-R)^{1-\gamma}}\right)^{m_{1}}\)(6.6.13)
  • 整理后形式:\(\frac{\mathrm{d}a}{\mathrm{d}N}=\frac{C_{1}}{(1-R)^{m_{1}(1-\gamma)}}(\Delta K)^{m_{1}}\)(6.6.14)
  • 材料常数关系:\(C=\frac{C_{1}}{(1-R)^{m_{1}(1-\gamma)}}\)(6.6.15),\(m=m_{1}\)(6.6.16)
  • \(R<0\)时等效变程:\(\Delta \bar{K}=\frac{\Delta K}{(1-R)^{1-\gamma}}=K_{\mathrm{max}}\)(6.6.17)
  • \(R<0\)时裂纹扩展率:\(\frac{\mathrm{d}a}{\mathrm{d}N}=C_{1}K_{\mathrm{max}}^{m_{1}}\)(6.6.18)
  • \(\gamma=1\)时等效变程:\(\Delta \bar{K}=\frac{\Delta K}{(1-R)^{1-\gamma}}=\Delta K\)(6.6.19)

6.6.4 福尔曼方程

  • 福尔曼公式(形式1):\(\frac{\mathrm{d}a}{\mathrm{d}N}=\frac{C_{2}(\Delta K)^{m_{2}}}{(1-R)K_{\mathrm{c}}-\Delta K}\)(6.6.20)
  • 福尔曼公式(形式2):\(\frac{\mathrm{d}a}{\mathrm{d}N}=\frac{C_{2}(\Delta K)^{m_{2}}}{(1-R)(K_{\mathrm{c}}-K_{\mathrm{max}})}\)(6.6.21)

6.6.5 寿命估算

  • 裂纹扩展率一般形式:\(\frac{\mathrm{d}a}{\mathrm{d}N}=f(\Delta K,R)\)(6.6.22)
  • 剩余寿命积分:\(\int_{N_{\mathrm{i}}}^{N_{\mathrm{f}}}\mathrm{d}N=\int_{a_{\mathrm{i}}}^{a_{\mathrm{f}}}\frac{\mathrm{d}a}{f(\Delta K,R)}\)(6.6.23)
  • 剩余寿命定义:\(N_{\mathrm{if}}=N_{\mathrm{f}}-N_{\mathrm{i}}=\int_{N_{\mathrm{i}}}^{N_{\mathrm{f}}}\mathrm{d}N\)(6.6.24)
  • 帕里斯公式(特殊形式):\(\frac{\mathrm{d}a}{\mathrm{d}N}=C(\Delta K)^{m}\)(6.6.25)
  • 应力强度因子变程(含几何函数):\(\Delta K=F\Delta S\sqrt{\pi a}\)(6.6.26)
  • 裂纹扩展率(代入\(\Delta K\)):\(\frac{\mathrm{d}a}{\mathrm{d}N}=C(F\Delta S\sqrt{\pi})^{m}a^{m/2}\)(6.6.27)
  • 寿命积分(代入扩展率):\(N_{\mathrm{if}}=\int_{a_{\mathrm{i}}}^{a_{\mathrm{f}}}\frac{1}{C(F\Delta S\sqrt{\pi})^{m}}a^{-m/2}\mathrm{d}a\)(6.6.28)
  • 寿命积分(\(F\)为常数时):\(N_{\mathrm{if}}=\frac{\left[1-\left(\frac{a_{\mathrm{i}}}{a_{\mathrm{f}}}\right)^{\frac{m}{2}-1}\right]}{C(F\Delta S\sqrt{\pi})^{m}\left(\frac{m}{2}-1\right)a_{\mathrm{i}}^{\frac{m}{2}-1}}\)(6.6.29)
  • 断裂时应力强度因子(例6.6.1):\(K_{\mathrm{c}}=\sigma_{\mathrm{max}}\sqrt{\pi a_{\mathrm{f}}}\)(6.6.30)

例6.6.2 焊点试样相关

  • 原始裂纹应力强度因子(I型):\(K_{\mathrm{I}}=\frac{P}{2\pi}\left(\frac{3}{t}\right)^{1/2}\left[\frac{2\left(\frac{D}{d}\right)^{2}\ln\left(\frac{D}{d}\right)}{\left(\frac{D}{d}\right)^{2}-1}-1\right]\)(6.6.31)
  • 弯折裂纹局部应力强度因子(I型):\(k_{\mathrm{I}}=\frac{1}{4}\left(3\cos\frac{\alpha}{2}+\cos\frac{3\alpha}{2}\right)K_{\mathrm{I}}+\frac{3}{4}\left(\sin\frac{\alpha}{2}+\sin\frac{3\alpha}{2}\right)K_{\mathrm{II}}\)(6.6.32)
  • 弯折裂纹局部应力强度因子(II型):\(k_{\mathrm{II}}=-\frac{1}{4}\left(\sin\frac{\alpha}{2}+\sin\frac{3\alpha}{2}\right)K_{\mathrm{I}}+\frac{1}{4}\left(\cos\frac{\alpha}{2}+3\cos\frac{3\alpha}{2}\right)K_{\mathrm{II}}\)(6.6.33)
  • 纯开口加载下局部应力强度因子(I型):\(k_{\mathrm{I}}=\frac{1}{4}\left(3\cos\frac{\alpha}{2}+\cos\frac{3\alpha}{2}\right)K_{\mathrm{I}}\)(6.6.34)
  • 纯开口加载下局部应力强度因子(II型):\(k_{\mathrm{II}}=-\frac{1}{4}\left(\sin\frac{\alpha}{2}+\sin\frac{3\alpha}{2}\right)K_{\mathrm{I}}\)(6.6.35)
  • 有效局部应力强度因子:\(k_{\mathrm{eq}}=\sqrt{k_{\mathrm{I}}^{2}+k_{\mathrm{II}}^{2}}\)(6.6.36)
  • 应力强度因子变程(例6.6.2):\(\Delta K_{\mathrm{I}}=\frac{P_{\mathrm{max}}-P_{\mathrm{min}}}{2\pi}\left(\frac{3}{t}\right)^{1/2}\left[\frac{2\left(\frac{D}{d}\right)^{2}\ln\left(\frac{D}{d}\right)}{\left(\frac{D}{d}\right)^{2}-1}-1\right]\)(6.6.37)
  • 寿命积分(例6.6.2):\(\int_{0}^{N_{\mathrm{f}}}\mathrm{d}N=\int_{0}^{a_{\mathrm{f}}}\frac{\mathrm{d}a}{C(\Delta k_{\mathrm{eq}})^{m}}\)(6.6.38)
  • 寿命计算(例6.6.2):\(N_{\mathrm{f}}=\frac{t}{C(\Delta k_{\mathrm{eq}})^{m}\sin\alpha}\)(6.6.39)
posted @ 2025-11-29 18:19  redufa  阅读(3)  评论(0)    收藏  举报