尼科马库斯定理
内容
\[\sum_{i=1}^n i^3 = (\sum_{i=1}^n i)^2
\]
证明
\[\sum_{i=1}^n i^3
\]
\[= \sum_{i=1}^n \frac{(i^4-(i-1)^4+6i^2-4i+1)}{4}
\]
\[= n^4 + \frac{1}{4} \sum_{i=1}^n (6i^2-4i+1)
\]
\[= n^4 + \frac{3}{2} \sum_{i=1}^n i^2 - \sum_{i=1}^n i + \frac{n}{4}
\]
\[= n^4 + \frac{3}{2} \frac{n(n+1)(2n+1)}{6} -\frac{n(n+1)}{2} +\frac{n}{4}
\]
化简可得:
\[= (\frac{n(n+1)}{2})^2
\]
\[= (\sum_{i=1}^n i)^2
\]