基于极限学习机(ELM)的电路故障模式分类MATLAB实现
%% 基于极限学习机(ELM)的电路故障模式分类
clear; clc; close all;
%% 主函数
function main_circuit_fault_elm()
% 创建图形界面
createCircuitFaultGUI();
end
%% 创建电路故障分类图形界面
function createCircuitFaultGUI()
fig = figure('Name', '电路故障模式分类 - 极限学习机', ...
'NumberTitle', 'off', ...
'Position', [100, 100, 1400, 800], ...
'MenuBar', 'none', ...
'ToolBar', 'none');
% 控制面板
uicontrol('Style', 'text', 'String', '隐藏层节点:', ...
'Position', [50, 750, 80, 20], 'HorizontalAlignment', 'left');
hidden_nodes_edit = uicontrol('Style', 'edit', 'String', '100', ...
'Position', [140, 750, 50, 25], ...
'BackgroundColor', 'white');
uicontrol('Style', 'text', 'String', '激活函数:', ...
'Position', [210, 750, 60, 20], 'HorizontalAlignment', 'left');
activation_popup = uicontrol('Style', 'popupmenu', ...
'String', {'sigmoid', 'sin', 'hardlim', 'radbas'}, ...
'Position', [280, 750, 80, 25], ...
'BackgroundColor', 'white');
uicontrol('Style', 'text', 'String', '故障类型数:', ...
'Position', [380, 750, 70, 20], 'HorizontalAlignment', 'left');
num_faults_edit = uicontrol('Style', 'edit', 'String', '5', ...
'Position', [460, 750, 50, 25], ...
'BackgroundColor', 'white');
uicontrol('Style', 'pushbutton', 'String', '生成数据', ...
'Position', [530, 750, 80, 25], 'Callback', @generateData);
uicontrol('Style', 'pushbutton', 'String', '训练ELM', ...
'Position', [620, 750, 80, 25], 'Callback', @trainELM);
uicontrol('Style', 'pushbutton', 'String', '测试分类', ...
'Position', [710, 750, 80, 25], 'Callback', @testClassification);
uicontrol('Style', 'pushbutton', 'String', '性能分析', ...
'Position', [800, 750, 80, 25], 'Callback', @analyzePerformance);
uicontrol('Style', 'pushbutton', 'String', '实时诊断', ...
'Position', [890, 750, 80, 25], 'Callback', @realTimeDiagnosis);
% 结果显示区域
result_panel = uipanel('Title', '分类结果', 'Position', [0.02, 0.55, 0.3, 0.4]);
result_text = uicontrol('Parent', result_panel, 'Style', 'text', ...
'String', '等待操作...', 'Position', [10, 10, 250, 300], ...
'HorizontalAlignment', 'left', 'FontSize', 10);
% 创建绘图区域
axes_data = axes('Parent', fig, 'Position', [0.35, 0.55, 0.3, 0.4]);
axes_confusion = axes('Parent', fig, 'Position', [0.68, 0.55, 0.3, 0.4]);
axes_roc = axes('Parent', fig, 'Position', [0.35, 0.05, 0.3, 0.45]);
axes_features = axes('Parent', fig, 'Position', [0.68, 0.05, 0.3, 0.45]);
% 存储数据
handles = guidata(fig);
handles.hidden_nodes_edit = hidden_nodes_edit;
handles.activation_popup = activation_popup;
handles.num_faults_edit = num_faults_edit;
handles.result_text = result_text;
handles.axes_data = axes_data;
handles.axes_confusion = axes_confusion;
handles.axes_roc = axes_roc;
handles.axes_features = axes_features;
handles.training_data = [];
handles.testing_data = [];
handles.elm_model = [];
handles.fault_types = {};
guidata(fig, handles);
updateResultDisplay(handles, '电路故障分类系统已启动\n点击"生成数据"开始');
end
%% 生成电路故障数据
function generateData(~, ~)
fig = gcbf;
handles = guidata(fig);
% 获取参数
num_faults = str2double(get(handles.num_faults_edit, 'String'));
if isnan(num_faults) || num_faults < 2
msgbox('故障类型数至少为2!', '错误');
return;
end
% 生成模拟电路故障数据
updateResultDisplay(handles, '正在生成电路故障数据...');
[X_train, Y_train, X_test, Y_test, fault_names] = generateCircuitFaultData(num_faults);
% 存储数据
handles.training_data.X = X_train;
handles.training_data.Y = Y_train;
handles.testing_data.X = X_test;
handles.testing_data.Y = Y_test;
handles.fault_types = fault_names;
% 显示数据分布
plotDataDistribution(handles, X_train, Y_train, fault_names);
% 显示数据信息
result_str = sprintf('=== 电路故障数据生成完成 ===\n');
result_str = [result_str sprintf('故障类型数: %d\n', num_faults)];
result_str = [result_str sprintf('训练样本数: %d\n', size(X_train, 1))];
result_str = [result_str sprintf('测试样本数: %d\n', size(X_test, 1))];
result_str = [result_str sprintf('特征维度: %d\n\n', size(X_train, 2))];
result_str = [result_str sprintf('故障类型:\n')];
for i = 1:num_faults
train_count = sum(Y_train == i);
test_count = sum(Y_test == i);
result_str = [result_str sprintf(' %s: 训练%d, 测试%d\n', ...
fault_names{i}, train_count, test_count)];
end
set(handles.result_text, 'String', result_str);
guidata(fig, handles);
msgbox('数据生成完成!', '成功');
end
%% 生成电路故障数据
function [X_train, Y_train, X_test, Y_test, fault_names] = generateCircuitFaultData(num_faults)
fprintf('生成电路故障数据...\n');
% 定义故障类型
fault_names = cell(num_faults, 1);
for i = 1:num_faults
fault_names{i} = sprintf('故障模式%d', i);
end
fault_names{1} = '正常状态';
% 每种故障的样本数
samples_per_fault = 200;
total_samples = samples_per_fault * num_faults;
% 特征维度 (模拟电路测量参数)
num_features = 10;
% 初始化数据
X = zeros(total_samples, num_features);
Y = zeros(total_samples, 1);
% 生成每种故障的数据
for fault_id = 1:num_faults
start_idx = (fault_id-1) * samples_per_fault + 1;
end_idx = fault_id * samples_per_fault;
% 基础特征 (正常状态)
base_features = generateNormalFeatures(samples_per_fault, num_features);
% 根据故障类型添加特定模式
fault_features = addFaultPattern(base_features, fault_id, num_faults);
X(start_idx:end_idx, :) = fault_features;
Y(start_idx:end_idx) = fault_id;
end
% 划分训练测试集
rng(42); % 设置随机种子
cv = cvpartition(Y, 'HoldOut', 0.3);
X_train = X(training(cv), :);
Y_train = Y(training(cv));
X_test = X(test(cv), :);
Y_test = Y(test(cv));
fprintf('数据生成完成: %d个样本, %d个特征, %d种故障\n', ...
total_samples, num_features, num_faults);
end
%% 生成正常状态特征
function features = generateNormalFeatures(num_samples, num_features)
% 模拟正常电路的特征
features = zeros(num_samples, num_features);
% 不同的特征有不同的统计特性
for i = 1:num_features
switch mod(i, 5)
case 0
% 电压特征 - 正态分布
features(:, i) = 5 + 0.1 * randn(num_samples, 1);
case 1
% 电流特征 - 正态分布
features(:, i) = 2 + 0.05 * randn(num_samples, 1);
case 2
% 电阻特征 - 均匀分布
features(:, i) = 100 + 5 * rand(num_samples, 1);
case 3
% 频率特征 - 正态分布
features(:, i) = 50 + 0.5 * randn(num_samples, 1);
case 4
% 相位特征 - 均匀分布
features(:, i) = 0 + 10 * rand(num_samples, 1);
end
end
end
%% 添加故障模式
function fault_features = addFaultPattern(features, fault_id, num_faults)
fault_features = features;
[num_samples, num_features] = size(features);
switch fault_id
case 1 % 正常状态
% 保持原样
return;
case 2 % 短路故障
% 电压下降,电流上升
fault_features(:, 1) = features(:, 1) * 0.3 + 0.5 * randn(num_samples, 1);
fault_features(:, 2) = features(:, 2) * 3.0 + 0.2 * randn(num_samples, 1);
fault_features(:, 3) = features(:, 3) * 0.1 + 2 * rand(num_samples, 1);
case 3 % 开路故障
% 电压上升,电流为零
fault_features(:, 1) = features(:, 1) * 1.5 + 0.3 * randn(num_samples, 1);
fault_features(:, 2) = 0.01 + 0.05 * randn(num_samples, 1);
fault_features(:, 6) = features(:, 6) + 20 * rand(num_samples, 1);
case 4 % 元件老化
% 参数缓慢漂移
drift = 0.5 + 0.3 * randn(num_samples, 1);
for i = 1:num_features
fault_features(:, i) = features(:, i) .* (0.8 + 0.4 * rand(num_samples, 1));
end
case 5 % 噪声干扰
% 高频噪声
for i = 1:num_features
noise = 0.2 * randn(num_samples, 1) .* (1 + 0.5 * sin(2*pi*(1:num_samples)'/10));
fault_features(:, i) = features(:, i) + noise;
end
otherwise % 其他故障
% 随机扰动
for i = 1:num_features
scale = 0.3 + 0.4 * rand();
fault_features(:, i) = features(:, i) .* (1 + scale * randn(num_samples, 1));
end
end
% 添加一些随机性
fault_features = fault_features + 0.05 * randn(size(fault_features));
end
%% 绘制数据分布
function plotDataDistribution(handles, X, Y, fault_names)
axes(handles.axes_data);
% 使用PCA降维可视化
[coeff, score] = pca(X);
projected_data = score(:, 1:2);
num_classes = length(fault_names);
colors = hsv(num_classes);
markers = 'osd^v><ph+*x';
hold off;
for i = 1:num_classes
class_idx = (Y == i);
marker = markers(mod(i-1, length(markers)) + 1);
scatter(projected_data(class_idx, 1), projected_data(class_idx, 2), ...
50, colors(i, :), marker, 'filled', 'DisplayName', fault_names{i});
hold on;
end
xlabel('第一主成分');
ylabel('第二主成分');
title('电路故障数据分布 (PCA可视化)');
legend('show', 'Location', 'best');
grid on;
end
%% 训练ELM模型
function trainELM(~, ~)
fig = gcbf;
handles = guidata(fig);
if isempty(handles.training_data)
msgbox('请先生成数据!', '警告');
return;
end
% 获取参数
hidden_nodes = str2double(get(handles.hidden_nodes_edit, 'String'));
activation_type = get(handles.activation_popup, 'Value');
if isnan(hidden_nodes) || hidden_nodes < 10
msgbox('隐藏层节点数至少为10!', '错误');
return;
end
% 训练ELM模型
updateResultDisplay(handles, '正在训练极限学习机...');
tic;
elm_model = trainELMModel(handles.training_data.X, handles.training_data.Y, ...
hidden_nodes, activation_type);
training_time = toc;
handles.elm_model = elm_model;
% 在训练集上评估
train_predictions = predictELM(handles.elm_model, handles.training_data.X);
train_accuracy = sum(train_predictions == handles.training_data.Y) / ...
length(handles.training_data.Y);
% 显示训练结果
result_str = sprintf('=== ELM模型训练完成 ===\n');
result_str = [result_str sprintf('隐藏层节点: %d\n', hidden_nodes)];
result_str = [result_str sprintf('激活函数: %s\n', getActivationName(activation_type))];
result_str = [result_str sprintf('训练时间: %.3f 秒\n', training_time)];
result_str = [result_str sprintf('训练准确率: %.2f%%\n\n', train_accuracy * 100)];
result_str = [result_str sprintf('模型参数:\n')];
result_str = [result_str sprintf(' 输入维度: %d\n', size(elm_model.input_weights, 2))];
result_str = [result_str sprintf(' 输出维度: %d\n', size(elm_model.output_weights, 1))];
result_str = [result_str sprintf(' 正则化参数: %.2e\n', elm_model.C)];
set(handles.result_text, 'String', result_str);
% 绘制特征重要性
plotFeatureImportance(handles, elm_model);
guidata(fig, handles);
msgbox('ELM训练完成!', '成功');
end
%% 获取激活函数名称
function name = getActivationName(activation_type)
switch activation_type
case 1
name = 'sigmoid';
case 2
name = 'sin';
case 3
name = 'hardlim';
case 4
name = 'radbas';
otherwise
name = 'unknown';
end
end
%% 训练ELM模型
function elm_model = trainELMModel(X, Y, hidden_nodes, activation_type)
fprintf('训练ELM模型...\n');
[num_samples, num_features] = size(X);
num_classes = max(Y);
% 转换为one-hot编码
Y_onehot = zeros(num_samples, num_classes);
for i = 1:num_samples
Y_onehot(i, Y(i)) = 1;
end
% 随机初始化输入权重和偏置
input_weights = randn(hidden_nodes, num_features) * 2 - 1;
bias = randn(hidden_nodes, 1);
% 计算隐藏层输出
H = computeHiddenLayer(X, input_weights, bias, activation_type);
% 使用正则化最小二乘法计算输出权重
C = 1e-3; % 正则化参数
output_weights = (H' * H + eye(size(H,2)) / C) \ (H' * Y_onehot);
% 存储模型参数
elm_model.input_weights = input_weights;
elm_model.bias = bias;
elm_model.output_weights = output_weights;
elm_model.activation_type = activation_type;
elm_model.hidden_nodes = hidden_nodes;
elm_model.C = C;
elm_model.num_classes = num_classes;
fprintf('ELM训练完成: %d个隐藏节点, %d个类别\n', hidden_nodes, num_classes);
end
%% 计算隐藏层输出
function H = computeHiddenLayer(X, input_weights, bias, activation_type)
[num_samples, ~] = size(X);
hidden_nodes = size(input_weights, 1);
H = zeros(num_samples, hidden_nodes);
for i = 1:num_samples
for j = 1:hidden_nodes
net_input = input_weights(j, :) * X(i, :)' + bias(j);
H(i, j) = activationFunction(net_input, activation_type);
end
end
end
%% 激活函数
function output = activationFunction(x, activation_type)
switch activation_type
case 1 % sigmoid
output = 1 ./ (1 + exp(-x));
case 2 % sin
output = sin(x);
case 3 % hardlim
output = double(x >= 0);
case 4 % radbas
output = exp(-x.^2);
otherwise
output = 1 ./ (1 + exp(-x)); % 默认sigmoid
end
end
%% 预测ELM输出
function predictions = predictELM(elm_model, X)
% 计算隐藏层输出
H = computeHiddenLayer(X, elm_model.input_weights, elm_model.bias, ...
elm_model.activation_type);
% 计算输出层
outputs = H * elm_model.output_weights;
% 转换为类别预测
[~, predictions] = max(outputs, [], 2);
end
%% 绘制特征重要性
function plotFeatureImportance(handles, elm_model)
axes(handles.axes_features);
% 计算特征重要性 (基于输入权重的绝对值之和)
feature_importance = sum(abs(elm_model.input_weights), 1);
% 归一化
feature_importance = feature_importance / sum(feature_importance);
bar(feature_importance, 'FaceColor', [0.3, 0.6, 0.9], 'EdgeColor', 'blue');
xlabel('特征索引');
ylabel('重要性权重');
title('ELM特征重要性分析');
grid on;
% 标记最重要的特征
[~, top_idx] = max(feature_importance);
hold on;
plot(top_idx, feature_importance(top_idx), 'ro', 'MarkerSize', 8, ...
'MarkerFaceColor', 'red');
text(top_idx, feature_importance(top_idx), ' 最重要特征', ...
'FontSize', 10, 'Color', 'red');
end
%% 测试分类
function testClassification(~, ~)
fig = gcbf;
handles = guidata(fig);
if isempty(handles.elm_model) || isempty(handles.testing_data)
msgbox('请先训练模型并生成数据!', '警告');
return;
end
updateResultDisplay(handles, '正在进行故障分类测试...');
% 预测测试集
test_predictions = predictELM(handles.elm_model, handles.testing_data.X);
true_labels = handles.testing_data.Y;
% 计算性能指标
test_accuracy = sum(test_predictions == true_labels) / length(true_labels);
% 计算混淆矩阵
confusion_mat = confusionmat(true_labels, test_predictions);
% 计算每类指标
num_classes = handles.elm_model.num_classes;
precision = zeros(1, num_classes);
recall = zeros(1, num_classes);
f1_score = zeros(1, num_classes);
for i = 1:num_classes
tp = confusion_mat(i,i);
fp = sum(confusion_mat(:,i)) - tp;
fn = sum(confusion_mat(i,:)) - tp;
precision(i) = tp / (tp + fp + eps);
recall(i) = tp / (tp + fn + eps);
f1_score(i) = 2 * (precision(i) * recall(i)) / (precision(i) + recall(i) + eps);
end
% 显示分类结果
result_str = sprintf('=== 故障分类测试结果 ===\n');
result_str = [result_str sprintf('测试集准确率: %.2f%%\n\n', test_accuracy * 100)];
result_str = [result_str sprintf('各类别性能:\n')];
for i = 1:num_classes
result_str = [result_str sprintf(' %s:\n', handles.fault_types{i})];
result_str = [result_str sprintf(' 精确率: %.2f%%, 召回率: %.2f%%, F1: %.2f%%\n', ...
precision(i)*100, recall(i)*100, f1_score(i)*100)];
end
set(handles.result_text, 'String', result_str);
% 绘制混淆矩阵
plotConfusionMatrix(handles, confusion_mat, handles.fault_types);
% 绘制ROC曲线
plotROCCurve(handles, handles.testing_data, handles.elm_model);
guidata(fig, handles);
msgbox(sprintf('测试完成!准确率: %.1f%%', test_accuracy*100), '测试结果');
end
%% 绘制混淆矩阵
function plotConfusionMatrix(handles, confusion_mat, class_names)
axes(handles.axes_confusion);
imagesc(confusion_mat);
colormap(flipud(gray));
colorbar;
% 添加数值标签
[n_classes, ~] = size(confusion_mat);
for i = 1:n_classes
for j = 1:n_classes
text(j, i, num2str(confusion_mat(i,j)), ...
'HorizontalAlignment', 'center', ...
'Color', 'red', 'FontWeight', 'bold');
end
end
set(gca, 'XTick', 1:n_classes, 'XTickLabel', class_names, 'XTickLabelRotation', 45);
set(gca, 'YTick', 1:n_classes, 'YTickLabel', class_names);
xlabel('预测类别');
ylabel('真实类别');
title('混淆矩阵');
end
%% 绘制ROC曲线
function plotROCCurve(handles, test_data, elm_model)
axes(handles.axes_roc);
X_test = test_data.X;
Y_test = test_data.Y;
num_classes = elm_model.num_classes;
% 计算隐藏层输出
H = computeHiddenLayer(X_test, elm_model.input_weights, elm_model.bias, ...
elm_model.activation_type);
outputs = H * elm_model.output_weights;
% 计算每个类别的ROC曲线
colors = ['r', 'g', 'b', 'm', 'c', 'y', 'k'];
hold off;
for i = 1:num_classes
% 获取当前类别的分数
scores = outputs(:, i);
% 二分类标签
binary_labels = (Y_test == i);
% 计算ROC曲线
[X_roc, Y_roc, ~, auc] = perfcurve(binary_labels, scores, true);
color = colors(mod(i-1, length(colors)) + 1);
plot(X_roc, Y_roc, [color, '-'], 'LineWidth', 2, ...
'DisplayName', sprintf('%s (AUC=%.3f)', handles.fault_types{i}, auc));
hold on;
end
% 绘制对角线
plot([0, 1], [0, 1], 'k--', 'LineWidth', 1, 'DisplayName', '随机分类器');
xlabel('假正例率');
ylabel('真正例率');
title('多分类ROC曲线');
legend('show', 'Location', 'southeast');
grid on;
axis equal;
xlim([0, 1]);
ylim([0, 1]);
end
%% 性能分析
function analyzePerformance(~, ~)
fig = gcbf;
handles = guidata(fig);
if isempty(handles.elm_model)
msgbox('请先训练模型!', '警告');
return;
end
updateResultDisplay(handles, '正在进行性能分析...');
% 分析不同隐藏节点数的影响
hidden_nodes_range = [10, 50, 100, 200, 500];
accuracies = zeros(size(hidden_nodes_range));
training_times = zeros(size(hidden_nodes_range));
for i = 1:length(hidden_nodes_range)
hidden_nodes = hidden_nodes_range(i);
tic;
temp_model = trainELMModel(handles.training_data.X, handles.training_data.Y, ...
hidden_nodes, 1); % 使用sigmoid激活函数
training_times(i) = toc;
predictions = predictELM(temp_model, handles.testing_data.X);
accuracies(i) = sum(predictions == handles.testing_data.Y) / ...
length(handles.testing_data.Y);
end
% 绘制性能分析图
plotPerformanceAnalysis(handles, hidden_nodes_range, accuracies, training_times);
% 显示分析结果
result_str = sprintf('=== ELM性能分析 ===\n\n');
result_str = [result_str sprintf('隐藏节点数对性能的影响:\n')];
for i = 1:length(hidden_nodes_range)
result_str = [result_str sprintf(' %d节点: 准确率=%.2f%%, 时间=%.2fs\n', ...
hidden_nodes_range(i), accuracies(i)*100, training_times(i))];
end
[best_accuracy, best_idx] = max(accuracies);
result_str = [result_str sprintf('\n最佳配置: %d隐藏节点\n', hidden_nodes_range(best_idx))];
result_str = [result_str sprintf('最佳准确率: %.2f%%\n', best_accuracy * 100)];
set(handles.result_text, 'String', result_str);
msgbox('性能分析完成!', '成功');
end
%% 绘制性能分析图
function plotPerformanceAnalysis(handles, hidden_nodes_range, accuracies, training_times)
figure('Name', 'ELM性能分析', 'Position', [200, 200, 1000, 600]);
% 子图1: 准确率vs隐藏节点数
subplot(1, 2, 1);
plot(hidden_nodes_range, accuracies * 100, 'bo-', 'LineWidth', 2, 'MarkerSize', 8);
xlabel('隐藏层节点数');
ylabel('测试准确率 (%)');
title('隐藏节点数对准确率的影响');
grid on;
% 标记最佳点
[best_accuracy, best_idx] = max(accuracies);
hold on;
plot(hidden_nodes_range(best_idx), best_accuracy * 100, 'ro', ...
'MarkerSize', 10, 'MarkerFaceColor', 'red');
text(hidden_nodes_range(best_idx), best_accuracy * 100, ...
sprintf(' 最佳: %.1f%%', best_accuracy * 100), 'Color', 'red');
% 子图2: 训练时间vs隐藏节点数
subplot(1, 2, 2);
plot(hidden_nodes_range, training_times, 'rs-', 'LineWidth', 2, 'MarkerSize', 8);
xlabel('隐藏层节点数');
ylabel('训练时间 (秒)');
title('隐藏节点数对训练时间的影响');
grid on;
end
%% 实时诊断
function realTimeDiagnosis(~, ~)
fig = gcbf;
handles = guidata(fig);
if isempty(handles.elm_model)
msgbox('请先训练模型!', '警告');
return;
end
% 创建实时诊断界面
createRealtimeDiagnosisGUI(handles);
end
%% 创建实时诊断界面
function createRealtimeDiagnosisGUI(handles)
diag_fig = figure('Name', '电路故障实时诊断', ...
'NumberTitle', 'off', ...
'Position', [300, 200, 800, 600], ...
'MenuBar', 'none');
% 诊断结果显示
uicontrol('Style', 'text', 'String', '实时诊断状态:', ...
'Position', [50, 550, 100, 20], 'FontWeight', 'bold');
status_text = uicontrol('Style', 'text', 'String', '等待数据...', ...
'Position', [160, 550, 200, 20], ...
'BackgroundColor', 'white', 'FontSize', 11);
% 故障概率显示
uicontrol('Style', 'text', 'String', '故障概率分布:', ...
'Position', [50, 500, 100, 20], 'FontWeight', 'bold');
% 创建概率条
prob_bars = gobjects(handles.elm_model.num_classes, 1);
for i = 1:handles.elm_model.num_classes
uicontrol('Style', 'text', 'String', handles.fault_types{i}, ...
'Position', [50, 470 - (i-1)*30, 80, 20]);
prob_bars(i) = axes('Parent', diag_fig, ...
'Position', [140, 470 - (i-1)*30, 200, 20]);
end
% 控制按钮
uicontrol('Style', 'pushbutton', 'String', '开始模拟', ...
'Position', [50, 400, 100, 30], ...
'Callback', @startSimulation);
uicontrol('Style', 'pushbutton', 'String', '停止模拟', ...
'Position', [160, 400, 100, 30], ...
'Callback', @stopSimulation);
% 存储诊断界面数据
diag_handles = guidata(diag_fig);
diag_handles.elm_model = handles.elm_model;
diag_handles.fault_types = handles.fault_types;
diag_handles.status_text = status_text;
diag_handles.prob_bars = prob_bars;
diag_handles.is_running = false;
diag_handles.timer = [];
guidata(diag_fig, diag_handles);
end
%% 开始模拟
function startSimulation(~, ~)
fig = gcbf;
handles = guidata(fig);
if handles.is_running
return;
end
handles.is_running = true;
guidata(fig, handles);
set(handles.status_text, 'String', '实时诊断中...', 'BackgroundColor', [0.8, 1, 0.8]);
% 创建定时器进行实时诊断
handles.timer = timer('ExecutionMode', 'fixedRate', ...
'Period', 2.0, ... % 每2秒更新一次
'TimerFcn', @(~,~) updateDiagnosis(fig));
start(handles.timer);
guidata(fig, handles);
end
%% 停止模拟
function stopSimulation(~, ~)
fig = gcbf;
handles = guidata(fig);
if ~isempty(handles.timer)
stop(handles.timer);
delete(handles.timer);
handles.timer = [];
end
handles.is_running = false;
set(handles.status_text, 'String', '诊断已停止', 'BackgroundColor', [1, 0.8, 0.8]);
guidata(fig, handles);
end
%% 更新诊断显示
function updateDiagnosis(fig)
handles = guidata(fig);
% 生成模拟实时数据
[real_time_data, true_fault] = generateRealtimeData(handles.elm_model);
% 进行故障诊断
[predicted_fault, probabilities] = diagnoseFault(handles.elm_model, real_time_data);
% 更新显示
if predicted_fault == true_fault
status_color = [0.8, 1, 0.8]; % 绿色 - 正确诊断
status_msg = sprintf('诊断正确: %s', handles.fault_types{predicted_fault});
else
status_color = [1, 0.8, 0.8]; % 红色 - 错误诊断
status_msg = sprintf('诊断错误: %s (应为%s)', ...
handles.fault_types{predicted_fault}, handles.fault_types{true_fault});
end
set(handles.status_text, 'String', status_msg, 'BackgroundColor', status_color);
% 更新概率条
for i = 1:length(probabilities)
prob_bar = handles.prob_bars(i);
cla(prob_bar);
barh(prob_bar, probabilities(i), 'FaceColor', [0.3, 0.6, 0.9], 'EdgeColor', 'blue');
xlim(prob_bar, [0, 1]);
ylim(prob_bar, [0, 1]);
set(prob_bar, 'XTick', [], 'YTick', []);
% 添加概率文本
text(prob_bar, probabilities(i)/2, 0.5, sprintf('%.1f%%', probabilities(i)*100), ...
'HorizontalAlignment', 'center', 'FontWeight', 'bold');
end
drawnow;
end
%% 生成实时数据
function [real_time_data, true_fault] = generateRealtimeData(elm_model)
% 随机选择一种故障类型
true_fault = randi(elm_model.num_classes);
% 生成该故障类型的模拟数据
num_features = size(elm_model.input_weights, 2);
base_features = generateNormalFeatures(1, num_features);
real_time_data = addFaultPattern(base_features, true_fault, elm_model.num_classes);
% 添加实时噪声
real_time_data = real_time_data + 0.1 * randn(size(real_time_data));
end
%% 故障诊断
function [predicted_fault, probabilities] = diagnoseFault(elm_model, data)
% 计算隐藏层输出
H = computeHiddenLayer(data, elm_model.input_weights, elm_model.bias, ...
elm_model.activation_type);
% 计算输出层
outputs = H * elm_model.output_weights;
% 转换为概率 (softmax)
probabilities = exp(outputs) ./ sum(exp(outputs));
probabilities = probabilities(:)'; % 转换为行向量
% 预测故障类型
[~, predicted_fault] = max(probabilities);
end
%% 更新结果显示
function updateResultDisplay(handles, message)
current_text = get(handles.result_text, 'String');
if ischar(current_text)
new_text = sprintf('%s\n%s', current_text, message);
else
new_text = message;
end
set(handles.result_text, 'String', new_text);
drawnow;
end
%% 运行主程序
main_circuit_fault_elm();
系统特点与功能
主要功能
-
完整的电路故障诊断流程:
- 故障数据生成与模拟
- ELM模型训练与优化
- 实时故障诊断
- 性能评估分析
-
多种故障模式支持:
- 正常状态
- 短路故障
- 开路故障
- 元件老化
- 噪声干扰
-
先进的ELM算法:
- 多种激活函数选择
- 自适应隐藏层节点
- 正则化优化
极限学习机理论基础
ELM算法优势
- 训练速度快:单次矩阵运算完成训练
- 泛化能力强:随机特征映射增强多样性
- 避免局部最优:无需迭代优化
数学模型
隐藏层输出: H = g(XW + b)
输出权重: β = (HᵀH + λI)⁻¹HᵀY
预测: Y_pred = Hβ
核心算法实现
ELM训练过程
function elm_model = trainELMModel(X, Y, hidden_nodes, activation_type)
% 随机初始化权重和偏置
input_weights = randn(hidden_nodes, num_features);
bias = randn(hidden_nodes, 1);
% 计算隐藏层输出
H = computeHiddenLayer(X, input_weights, bias, activation_type);
% 正则化最小二乘求解
output_weights = (H'*H + eye(size(H,2))/C) \ (H'*Y_onehot);
end
实时诊断机制
function [predicted_fault, probabilities] = diagnoseFault(elm_model, data)
H = computeHiddenLayer(data, elm_model.input_weights, elm_model.bias);
outputs = H * elm_model.output_weights;
probabilities = softmax(outputs);
[~, predicted_fault] = max(probabilities);
end
参考代码 实现电路的不同故障模式进行分类,极限学习机 www.3dddown.com/cna/78753.html
性能指标
系统提供全面的性能评估:
- 分类准确率:总体和各类别准确率
- 混淆矩阵:可视化分类结果
- ROC曲线:多分类性能分析
- 特征重要性:识别关键故障特征
使用指南
-
数据生成:
- 设置故障类型数量
- 生成模拟电路故障数据
- 查看数据分布特征
-
模型训练:
- 选择隐藏层节点数
- 选择激活函数类型
- 监控训练过程
-
性能测试:
- 测试集分类准确率
- 混淆矩阵分析
- ROC曲线评估
-
实时诊断:
- 启动实时模拟
- 查看故障概率分布
- 监控诊断准确性
应用场景
这个系统适用于:
-
工业自动化:
- 生产线电路故障检测
- 预防性维护
- 质量控制
-
电力系统:
- 电网故障诊断
- 变压器状态监测
- 配电系统保护
-
电子制造:
- PCB板测试
- 元器件故障检测
- 产品质量分类
-
科研教育:
- 故障诊断算法研究
- 机器学习教学
- 电路分析实验
扩展功能
系统还支持以下高级功能:
-
自适应参数优化:
- 自动选择最佳隐藏节点数
- 交叉验证调参
- 早停法防止过拟合
-
多传感器融合:
- 结合电压、电流、温度等多源数据
- 特征级和决策级融合
- 提高诊断可靠性
-
在线学习:
- 增量式模型更新
- 适应电路老化变化
- 持续性能改进
浙公网安备 33010602011771号