LDPC编解码与未编码信息的误码率比较
1. LDPC编码基础
LDPC编码原理
LDPC(Low-Density Parity-Check)码是一种线性分组码,具有稀疏的校验矩阵。
% LDPC码参数示例
n = 64800; % 码字长度
k = 32400; % 信息位长度
rate = k/n; % 编码速率
2. 系统模型与误码率理论分析
2.1 通信系统模型
信息源 → LDPC编码 → 调制 → 信道 → 解调 → LDPC译码 → 信息输出
2.2 理论误码率公式
未编码系统误码率(BPSK调制,AWGN信道):
function ber_uncoded = theoretical_ber_uncoded(EbN0_dB)
% 未编码BPSK在AWGN信道下的理论误码率
EbN0_linear = 10.^(EbN0_dB/10);
ber_uncoded = 0.5 * erfc(sqrt(EbN0_linear));
end
编码系统误码率下界:
function ber_coded_bound = theoretical_ber_coded(EbN0_dB, code_rate)
% LDPC编码系统的误码率下界
EbN0_linear = 10.^(EbN0_dB/10);
EcN0_linear = EbN0_linear * code_rate; % 编码后每比特能量
ber_coded_bound = 0.5 * erfc(sqrt(EcN0_linear));
end
3. MATLAB仿真实现
3.1 完整的仿真代码
function compare_ldpc_uncoded_ber()
% 比较LDPC编码与未编码系统的误码率
clear; clc; close all;
% 仿真参数
EbN0_dB_range = 0:0.5:4; % Eb/N0范围(dB)
num_frames = 1000; % 仿真帧数
frame_length = 1000; % 每帧信息比特数
max_ldpc_iterations = 50; % LDPC最大迭代次数
% 初始化LDPC编码器
if exist('dvbs2ldpc', 'file')
% 使用DVB-S2标准的LDPC码
code_rate = 1/2;
H = dvbs2ldpc(code_rate);
enc = comm.LDPCEncoder(H);
dec = comm.LDPCDecoder(H, 'MaximumIterationCount', max_ldpc_iterations);
else
% 创建随机LDPC码
code_rate = 1/2;
n = 2000; k = 1000;
H = generate_ldpc_matrix(n, k);
enc = comm.LDPCEncoder('ParityCheckMatrix', H);
dec = comm.LDPCDecoder('ParityCheckMatrix', H, ...
'MaximumIterationCount', max_ldpc_iterations);
end
% 初始化结果存储
ber_uncoded = zeros(size(EbN0_dB_range));
ber_ldpc = zeros(size(EbN0_dB_range));
fer_ldpc = zeros(size(EbN0_dB_range)); % 帧错误率
% 主仿真循环
for idx = 1:length(EbN0_dB_range)
EbN0_dB = EbN0_dB_range(idx);
fprintf('仿真 Eb/N0 = %.1f dB\n', EbN0_dB);
error_bits_uncoded = 0;
error_bits_ldpc = 0;
error_frames_ldpc = 0;
total_bits = 0;
for frame = 1:num_frames
% 生成随机信息比特
info_bits = randi([0 1], frame_length, 1);
% === 未编码系统 ===
% BPSK调制: 0->+1, 1->-1
modulated_uncoded = 1 - 2 * info_bits;
% AWGN信道
noise_variance_uncoded = 1 / (2 * code_rate * 10^(EbN0_dB/10));
noise_uncoded = sqrt(noise_variance_uncoded) * randn(size(modulated_uncoded));
received_uncoded = modulated_uncoded + noise_uncoded;
% 硬判决解调
decoded_uncoded = received_uncoded < 0;
errors_uncoded = sum(decoded_uncoded ~= info_bits);
error_bits_uncoded = error_bits_uncoded + errors_uncoded;
% === LDPC编码系统 ===
% LDPC编码
if frame_length > enc.BlockLength
% 如果信息长度大于编码器块长度,需要分段
encoded_bits = [];
num_blocks = ceil(frame_length / enc.BlockLength);
for block = 1:num_blocks
start_idx = (block-1) * enc.BlockLength + 1;
end_idx = min(block * enc.BlockLength, frame_length);
block_bits = info_bits(start_idx:end_idx);
if length(block_bits) < enc.BlockLength
% 填充零
block_bits = [block_bits; zeros(enc.BlockLength - length(block_bits), 1)];
end
encoded_bits = [encoded_bits; step(enc, block_bits)];
end
else
% 直接编码
if frame_length < enc.BlockLength
info_bits_padded = [info_bits; zeros(enc.BlockLength - frame_length, 1)];
encoded_bits = step(enc, info_bits_padded);
else
encoded_bits = step(enc, info_bits);
end
end
% BPSK调制
modulated_ldpc = 1 - 2 * encoded_bits;
% AWGN信道 - 注意能量归一化
noise_variance_ldpc = 1 / (2 * 10^(EbN0_dB/10));
noise_ldpc = sqrt(noise_variance_ldpc) * randn(size(modulated_ldpc));
received_ldpc = modulated_ldpc + noise_ldpc;
% LDPC译码(软判决)
llr = 2 * received_ldpc / noise_variance_ldpc; % 对数似然比
decoded_ldpc = step(dec, llr);
% 提取信息比特(去掉填充位)
if length(decoded_ldpc) > frame_length
decoded_info_bits = decoded_ldpc(1:frame_length);
else
decoded_info_bits = decoded_ldpc;
end
errors_ldpc = sum(decoded_info_bits ~= info_bits);
error_bits_ldpc = error_bits_ldpc + errors_ldpc;
if errors_ldpc > 0
error_frames_ldpc = error_frames_ldpc + 1;
end
total_bits = total_bits + frame_length;
end
% 计算误码率
ber_uncoded(idx) = error_bits_uncoded / total_bits;
ber_ldpc(idx) = error_bits_ldpc / total_bits;
fer_ldpc(idx) = error_frames_ldpc / num_frames;
end
% 绘制结果
plot_results(EbN0_dB_range, ber_uncoded, ber_ldpc, fer_ldpc, code_rate);
% 保存结果
save('ldpc_comparison_results.mat', 'EbN0_dB_range', 'ber_uncoded', 'ber_ldpc', 'fer_ldpc');
end
function H = generate_ldpc_matrix(n, k)
% 生成随机LDPC校验矩阵
dv = 3; % 变量节点度
dc = 6; % 校验节点度
% 使用MATLAB的LDPC矩阵生成函数
if exist('ldpcQuasiCyclicMatrix', 'file')
H = ldpcQuasiCyclicMatrix(n, k, dv, dc);
else
% 简单的随机生成(实际应用中应使用标准矩阵)
m = n - k;
H = sparse(m, n);
% 这里使用随机生成,实际应用应使用结构化方法
for i = 1:m
indices = randperm(n, dc);
H(i, indices) = 1;
end
end
end
function plot_results(EbN0_dB, ber_uncoded, ber_ldpc, fer_ldpc, code_rate)
% 绘制误码率比较结果
figure('Position', [100, 100, 1200, 800]);
% 理论曲线
EbN0_linear = 10.^(EbN0_dB/10);
theoretical_uncoded = 0.5 * erfc(sqrt(EbN0_linear));
theoretical_coded_bound = 0.5 * erfc(sqrt(EbN0_linear * code_rate));
subplot(2,2,1);
semilogy(EbN0_dB, theoretical_uncoded, 'k--', 'LineWidth', 2, 'DisplayName', '理论未编码');
hold on;
semilogy(EbN0_dB, theoretical_coded_bound, 'r--', 'LineWidth', 2, 'DisplayName', '编码系统下界');
semilogy(EbN0_dB, ber_uncoded, 'bo-', 'LineWidth', 2, 'MarkerSize', 6, 'DisplayName', '仿真未编码');
semilogy(EbN0_dB, ber_ldpc, 'rs-', 'LineWidth', 2, 'MarkerSize', 6, 'DisplayName', '仿真LDPC编码');
grid on;
xlabel('Eb/N0 (dB)');
ylabel('误码率 (BER)');
title('LDPC编码 vs 未编码系统误码率比较');
legend('Location', 'southwest');
ylim([1e-6, 1]);
subplot(2,2,2);
semilogy(EbN0_dB, fer_ldpc, 'g^-', 'LineWidth', 2, 'MarkerSize', 6);
grid on;
xlabel('Eb/N0 (dB)');
ylabel('帧错误率 (FER)');
title('LDPC编码帧错误率');
subplot(2,2,3);
% 编码增益显示
coding_gain = zeros(size(EbN0_dB));
for i = 1:length(EbN0_dB)
if ber_ldpc(i) > 0 && ber_uncoded(i) > 0
% 在相同误码率水平下需要的Eb/N0差异
target_ber = ber_ldpc(i);
[~, idx_uncoded] = min(abs(ber_uncoded - target_ber));
coding_gain(i) = EbN0_dB(i) - EbN0_dB(idx_uncoded);
end
end
plot(EbN0_dB, coding_gain, 'mo-', 'LineWidth', 2, 'MarkerSize', 6);
grid on;
xlabel('Eb/N0 (dB)');
ylabel('编码增益 (dB)');
title('LDPC编码增益');
subplot(2,2,4);
% 性能改善因子
improvement_factor = ber_uncoded ./ max(ber_ldpc, 1e-8);
semilogy(EbN0_dB, improvement_factor, 'cd-', 'LineWidth', 2, 'MarkerSize', 6);
grid on;
xlabel('Eb/N0 (dB)');
ylabel('性能改善倍数');
title('LDPC编码性能改善倍数');
end
3.2 简化的快速仿真版本
function quick_ldpc_comparison()
% 快速LDPC编码性能比较
EbN0_dB = 0:1:4;
num_frames = 100;
info_length = 500;
% 使用MATLAB内置LDPC
if exist('dvbs2ldpc', 'file')
H = dvbs2ldpc(1/2);
else
% 创建小型LDPC码用于演示
H = logical([1 1 0 1 0 0; 1 0 1 0 1 0; 0 1 1 0 0 1]);
end
enc = comm.LDPCEncoder('ParityCheckMatrix', H);
dec = comm.LDPCDecoder('ParityCheckMatrix', H);
ber_uncoded = zeros(size(EbN0_dB));
ber_ldpc = zeros(size(EbN0_dB));
for i = 1:length(EbN0_dB)
fprintf('处理 Eb/N0 = %d dB\n', EbN0_dB(i));
error_uncoded = 0;
error_ldpc = 0;
total_bits = 0;
for frame = 1:num_frames
% 生成数据
data = randi([0 1], info_length, 1);
% 未编码
mod_uncoded = 1 - 2 * data;
noise_var = 1/(2 * 10^(EbN0_dB(i)/10));
rx_uncoded = mod_uncoded + sqrt(noise_var) * randn(size(mod_uncoded));
dec_uncoded = rx_uncoded < 0;
error_uncoded = error_uncoded + sum(dec_uncoded ~= data);
% LDPC编码
encoded = enc(data);
mod_ldpc = 1 - 2 * encoded;
rx_ldpc = mod_ldpc + sqrt(noise_var) * randn(size(mod_ldpc));
llr = 2 * rx_ldpc / noise_var;
decoded = dec(llr);
error_ldpc = error_ldpc + sum(decoded(1:info_length) ~= data);
total_bits = total_bits + info_length;
end
ber_uncoded(i) = error_uncoded / total_bits;
ber_ldpc(i) = error_ldpc / total_bits;
end
% 显示结果
figure;
semilogy(EbN0_dB, ber_uncoded, 'bo-', 'DisplayName', '未编码');
hold on;
semilogy(EbN0_dB, ber_ldpc, 'rs-', 'DisplayName', 'LDPC编码');
grid on;
xlabel('Eb/N0 (dB)');
ylabel('误码率');
legend;
title('LDPC编码性能快速比较');
end
4. 性能分析关键指标
4.1 编码增益计算
function gain_analysis(ber_uncoded, ber_ldpc, EbN0_dB)
% 分析LDPC编码增益
% 在特定误码率水平下的编码增益
target_bers = [1e-2, 1e-3, 1e-4, 1e-5];
coding_gains = zeros(size(target_bers));
for i = 1:length(target_bers)
target = target_bers(i);
% 找到LDPC编码达到目标误码率所需的Eb/N0
idx_ldpc = find(ber_ldpc <= target, 1);
if ~isempty(idx_ldpc)
EbN0_ldpc = EbN0_dB(idx_ldpc);
else
EbN0_ldpc = NaN;
end
% 找到未编码达到目标误码率所需的Eb/N0
idx_uncoded = find(ber_uncoded <= target, 1);
if ~isempty(idx_uncoded)
EbN0_uncoded = EbN0_dB(idx_uncoded);
else
EbN0_uncoded = NaN;
end
if ~isnan(EbN0_ldpc) && ~isnan(EbN0_uncoded)
coding_gains(i) = EbN0_uncoded - EbN0_ldpc;
else
coding_gains(i) = NaN;
end
end
fprintf('编码增益分析:\n');
for i = 1:length(target_bers)
fprintf('在BER=%.0e时,编码增益: %.2f dB\n', target_bers(i), coding_gains(i));
end
end
5. 不同参数的影响分析
5.1 不同编码速率比较
function compare_code_rates()
% 比较不同编码速率的LDPC性能
EbN0_dB = 0:0.5:5;
code_rates = [1/3, 1/2, 2/3, 3/4];
figure;
colors = ['r', 'g', 'b', 'm'];
for i = 1:length(code_rates)
rate = code_rates(i);
% 简化的性能估计
EbN0_linear = 10.^(EbN0_dB/10);
ber_approx = 0.5 * erfc(sqrt(EbN0_linear * rate));
semilogy(EbN0_dB, ber_approx, [colors(i) '-'], ...
'LineWidth', 2, 'DisplayName', sprintf('速率 = %.2f', rate));
hold on;
end
% 未编码参考
ber_uncoded = 0.5 * erfc(sqrt(10.^(EbN0_dB/10)));
semilogy(EbN0_dB, ber_uncoded, 'k--', 'LineWidth', 2, 'DisplayName', '未编码');
grid on;
xlabel('Eb/N0 (dB)');
ylabel('误码率下界');
title('不同LDPC编码速率性能比较');
legend;
end
6. 结论与分析
通过上述仿真和分析,可以得出以下关键结论:
- 编码增益:LDPC编码在中等至高信噪比区域可提供3-8dB的编码增益
- 瀑布区特性:LDPC码具有明显的"瀑布区",在特定信噪比以上误码率急剧下降
- 错误平层:在低误码率区域,LDPC码可能出现错误平层
- 复杂度权衡:编码增益的获得以增加编解码复杂度为代价
参考代码 信息通过LDPC编解码误码率与未编码信息误码率比较 www.youwenfan.com/contentcnm/79991.html
典型性能特征:
- 在BER=1e-5时,1/2码率的LDPC码可比未编码系统节省约4-6dB的功率
- 编码速率越低,编码增益越大,但频谱效率越低
- 迭代次数增加可改善性能,但有边际效应
浙公网安备 33010602011771号