LDPC编解码与未编码信息的误码率比较

1. LDPC编码基础

LDPC编码原理

LDPC(Low-Density Parity-Check)码是一种线性分组码,具有稀疏的校验矩阵。

% LDPC码参数示例
n = 64800;  % 码字长度
k = 32400;  % 信息位长度
rate = k/n; % 编码速率

2. 系统模型与误码率理论分析

2.1 通信系统模型

信息源 → LDPC编码 → 调制 → 信道 → 解调 → LDPC译码 → 信息输出

2.2 理论误码率公式

未编码系统误码率(BPSK调制,AWGN信道)

function ber_uncoded = theoretical_ber_uncoded(EbN0_dB)
    % 未编码BPSK在AWGN信道下的理论误码率
    EbN0_linear = 10.^(EbN0_dB/10);
    ber_uncoded = 0.5 * erfc(sqrt(EbN0_linear));
end

编码系统误码率下界

function ber_coded_bound = theoretical_ber_coded(EbN0_dB, code_rate)
    % LDPC编码系统的误码率下界
    EbN0_linear = 10.^(EbN0_dB/10);
    EcN0_linear = EbN0_linear * code_rate;  % 编码后每比特能量
    ber_coded_bound = 0.5 * erfc(sqrt(EcN0_linear));
end

3. MATLAB仿真实现

3.1 完整的仿真代码

function compare_ldpc_uncoded_ber()
    % 比较LDPC编码与未编码系统的误码率
    
    clear; clc; close all;
    
    % 仿真参数
    EbN0_dB_range = 0:0.5:4;          % Eb/N0范围(dB)
    num_frames = 1000;                 % 仿真帧数
    frame_length = 1000;               % 每帧信息比特数
    max_ldpc_iterations = 50;          % LDPC最大迭代次数
    
    % 初始化LDPC编码器
    if exist('dvbs2ldpc', 'file')
        % 使用DVB-S2标准的LDPC码
        code_rate = 1/2;
        H = dvbs2ldpc(code_rate);
        enc = comm.LDPCEncoder(H);
        dec = comm.LDPCDecoder(H, 'MaximumIterationCount', max_ldpc_iterations);
    else
        % 创建随机LDPC码
        code_rate = 1/2;
        n = 2000; k = 1000;
        H = generate_ldpc_matrix(n, k);
        enc = comm.LDPCEncoder('ParityCheckMatrix', H);
        dec = comm.LDPCDecoder('ParityCheckMatrix', H, ...
                              'MaximumIterationCount', max_ldpc_iterations);
    end
    
    % 初始化结果存储
    ber_uncoded = zeros(size(EbN0_dB_range));
    ber_ldpc = zeros(size(EbN0_dB_range));
    fer_ldpc = zeros(size(EbN0_dB_range));  % 帧错误率
    
    % 主仿真循环
    for idx = 1:length(EbN0_dB_range)
        EbN0_dB = EbN0_dB_range(idx);
        fprintf('仿真 Eb/N0 = %.1f dB\n', EbN0_dB);
        
        error_bits_uncoded = 0;
        error_bits_ldpc = 0;
        error_frames_ldpc = 0;
        total_bits = 0;
        
        for frame = 1:num_frames
            % 生成随机信息比特
            info_bits = randi([0 1], frame_length, 1);
            
            % === 未编码系统 ===
            % BPSK调制: 0->+1, 1->-1
            modulated_uncoded = 1 - 2 * info_bits;
            
            % AWGN信道
            noise_variance_uncoded = 1 / (2 * code_rate * 10^(EbN0_dB/10));
            noise_uncoded = sqrt(noise_variance_uncoded) * randn(size(modulated_uncoded));
            received_uncoded = modulated_uncoded + noise_uncoded;
            
            % 硬判决解调
            decoded_uncoded = received_uncoded < 0;
            errors_uncoded = sum(decoded_uncoded ~= info_bits);
            error_bits_uncoded = error_bits_uncoded + errors_uncoded;
            
            % === LDPC编码系统 ===
            % LDPC编码
            if frame_length > enc.BlockLength
                % 如果信息长度大于编码器块长度,需要分段
                encoded_bits = [];
                num_blocks = ceil(frame_length / enc.BlockLength);
                for block = 1:num_blocks
                    start_idx = (block-1) * enc.BlockLength + 1;
                    end_idx = min(block * enc.BlockLength, frame_length);
                    block_bits = info_bits(start_idx:end_idx);
                    if length(block_bits) < enc.BlockLength
                        % 填充零
                        block_bits = [block_bits; zeros(enc.BlockLength - length(block_bits), 1)];
                    end
                    encoded_bits = [encoded_bits; step(enc, block_bits)];
                end
            else
                % 直接编码
                if frame_length < enc.BlockLength
                    info_bits_padded = [info_bits; zeros(enc.BlockLength - frame_length, 1)];
                    encoded_bits = step(enc, info_bits_padded);
                else
                    encoded_bits = step(enc, info_bits);
                end
            end
            
            % BPSK调制
            modulated_ldpc = 1 - 2 * encoded_bits;
            
            % AWGN信道 - 注意能量归一化
            noise_variance_ldpc = 1 / (2 * 10^(EbN0_dB/10));
            noise_ldpc = sqrt(noise_variance_ldpc) * randn(size(modulated_ldpc));
            received_ldpc = modulated_ldpc + noise_ldpc;
            
            % LDPC译码(软判决)
            llr = 2 * received_ldpc / noise_variance_ldpc;  % 对数似然比
            decoded_ldpc = step(dec, llr);
            
            % 提取信息比特(去掉填充位)
            if length(decoded_ldpc) > frame_length
                decoded_info_bits = decoded_ldpc(1:frame_length);
            else
                decoded_info_bits = decoded_ldpc;
            end
            
            errors_ldpc = sum(decoded_info_bits ~= info_bits);
            error_bits_ldpc = error_bits_ldpc + errors_ldpc;
            
            if errors_ldpc > 0
                error_frames_ldpc = error_frames_ldpc + 1;
            end
            
            total_bits = total_bits + frame_length;
        end
        
        % 计算误码率
        ber_uncoded(idx) = error_bits_uncoded / total_bits;
        ber_ldpc(idx) = error_bits_ldpc / total_bits;
        fer_ldpc(idx) = error_frames_ldpc / num_frames;
    end
    
    % 绘制结果
    plot_results(EbN0_dB_range, ber_uncoded, ber_ldpc, fer_ldpc, code_rate);
    
    % 保存结果
    save('ldpc_comparison_results.mat', 'EbN0_dB_range', 'ber_uncoded', 'ber_ldpc', 'fer_ldpc');
end

function H = generate_ldpc_matrix(n, k)
    % 生成随机LDPC校验矩阵
    dv = 3;  % 变量节点度
    dc = 6;  % 校验节点度
    
    % 使用MATLAB的LDPC矩阵生成函数
    if exist('ldpcQuasiCyclicMatrix', 'file')
        H = ldpcQuasiCyclicMatrix(n, k, dv, dc);
    else
        % 简单的随机生成(实际应用中应使用标准矩阵)
        m = n - k;
        H = sparse(m, n);
        % 这里使用随机生成,实际应用应使用结构化方法
        for i = 1:m
            indices = randperm(n, dc);
            H(i, indices) = 1;
        end
    end
end

function plot_results(EbN0_dB, ber_uncoded, ber_ldpc, fer_ldpc, code_rate)
    % 绘制误码率比较结果
    figure('Position', [100, 100, 1200, 800]);
    
    % 理论曲线
    EbN0_linear = 10.^(EbN0_dB/10);
    theoretical_uncoded = 0.5 * erfc(sqrt(EbN0_linear));
    theoretical_coded_bound = 0.5 * erfc(sqrt(EbN0_linear * code_rate));
    
    subplot(2,2,1);
    semilogy(EbN0_dB, theoretical_uncoded, 'k--', 'LineWidth', 2, 'DisplayName', '理论未编码');
    hold on;
    semilogy(EbN0_dB, theoretical_coded_bound, 'r--', 'LineWidth', 2, 'DisplayName', '编码系统下界');
    semilogy(EbN0_dB, ber_uncoded, 'bo-', 'LineWidth', 2, 'MarkerSize', 6, 'DisplayName', '仿真未编码');
    semilogy(EbN0_dB, ber_ldpc, 'rs-', 'LineWidth', 2, 'MarkerSize', 6, 'DisplayName', '仿真LDPC编码');
    grid on;
    xlabel('Eb/N0 (dB)');
    ylabel('误码率 (BER)');
    title('LDPC编码 vs 未编码系统误码率比较');
    legend('Location', 'southwest');
    ylim([1e-6, 1]);
    
    subplot(2,2,2);
    semilogy(EbN0_dB, fer_ldpc, 'g^-', 'LineWidth', 2, 'MarkerSize', 6);
    grid on;
    xlabel('Eb/N0 (dB)');
    ylabel('帧错误率 (FER)');
    title('LDPC编码帧错误率');
    
    subplot(2,2,3);
    % 编码增益显示
    coding_gain = zeros(size(EbN0_dB));
    for i = 1:length(EbN0_dB)
        if ber_ldpc(i) > 0 && ber_uncoded(i) > 0
            % 在相同误码率水平下需要的Eb/N0差异
            target_ber = ber_ldpc(i);
            [~, idx_uncoded] = min(abs(ber_uncoded - target_ber));
            coding_gain(i) = EbN0_dB(i) - EbN0_dB(idx_uncoded);
        end
    end
    plot(EbN0_dB, coding_gain, 'mo-', 'LineWidth', 2, 'MarkerSize', 6);
    grid on;
    xlabel('Eb/N0 (dB)');
    ylabel('编码增益 (dB)');
    title('LDPC编码增益');
    
    subplot(2,2,4);
    % 性能改善因子
    improvement_factor = ber_uncoded ./ max(ber_ldpc, 1e-8);
    semilogy(EbN0_dB, improvement_factor, 'cd-', 'LineWidth', 2, 'MarkerSize', 6);
    grid on;
    xlabel('Eb/N0 (dB)');
    ylabel('性能改善倍数');
    title('LDPC编码性能改善倍数');
end

3.2 简化的快速仿真版本

function quick_ldpc_comparison()
    % 快速LDPC编码性能比较
    
    EbN0_dB = 0:1:4;
    num_frames = 100;
    info_length = 500;
    
    % 使用MATLAB内置LDPC
    if exist('dvbs2ldpc', 'file')
        H = dvbs2ldpc(1/2);
    else
        % 创建小型LDPC码用于演示
        H = logical([1 1 0 1 0 0; 1 0 1 0 1 0; 0 1 1 0 0 1]);
    end
    
    enc = comm.LDPCEncoder('ParityCheckMatrix', H);
    dec = comm.LDPCDecoder('ParityCheckMatrix', H);
    
    ber_uncoded = zeros(size(EbN0_dB));
    ber_ldpc = zeros(size(EbN0_dB));
    
    for i = 1:length(EbN0_dB)
        fprintf('处理 Eb/N0 = %d dB\n', EbN0_dB(i));
        
        error_uncoded = 0;
        error_ldpc = 0;
        total_bits = 0;
        
        for frame = 1:num_frames
            % 生成数据
            data = randi([0 1], info_length, 1);
            
            % 未编码
            mod_uncoded = 1 - 2 * data;
            noise_var = 1/(2 * 10^(EbN0_dB(i)/10));
            rx_uncoded = mod_uncoded + sqrt(noise_var) * randn(size(mod_uncoded));
            dec_uncoded = rx_uncoded < 0;
            error_uncoded = error_uncoded + sum(dec_uncoded ~= data);
            
            % LDPC编码
            encoded = enc(data);
            mod_ldpc = 1 - 2 * encoded;
            rx_ldpc = mod_ldpc + sqrt(noise_var) * randn(size(mod_ldpc));
            llr = 2 * rx_ldpc / noise_var;
            decoded = dec(llr);
            error_ldpc = error_ldpc + sum(decoded(1:info_length) ~= data);
            
            total_bits = total_bits + info_length;
        end
        
        ber_uncoded(i) = error_uncoded / total_bits;
        ber_ldpc(i) = error_ldpc / total_bits;
    end
    
    % 显示结果
    figure;
    semilogy(EbN0_dB, ber_uncoded, 'bo-', 'DisplayName', '未编码');
    hold on;
    semilogy(EbN0_dB, ber_ldpc, 'rs-', 'DisplayName', 'LDPC编码');
    grid on;
    xlabel('Eb/N0 (dB)');
    ylabel('误码率');
    legend;
    title('LDPC编码性能快速比较');
end

4. 性能分析关键指标

4.1 编码增益计算

function gain_analysis(ber_uncoded, ber_ldpc, EbN0_dB)
    % 分析LDPC编码增益
    
    % 在特定误码率水平下的编码增益
    target_bers = [1e-2, 1e-3, 1e-4, 1e-5];
    coding_gains = zeros(size(target_bers));
    
    for i = 1:length(target_bers)
        target = target_bers(i);
        
        % 找到LDPC编码达到目标误码率所需的Eb/N0
        idx_ldpc = find(ber_ldpc <= target, 1);
        if ~isempty(idx_ldpc)
            EbN0_ldpc = EbN0_dB(idx_ldpc);
        else
            EbN0_ldpc = NaN;
        end
        
        % 找到未编码达到目标误码率所需的Eb/N0
        idx_uncoded = find(ber_uncoded <= target, 1);
        if ~isempty(idx_uncoded)
            EbN0_uncoded = EbN0_dB(idx_uncoded);
        else
            EbN0_uncoded = NaN;
        end
        
        if ~isnan(EbN0_ldpc) && ~isnan(EbN0_uncoded)
            coding_gains(i) = EbN0_uncoded - EbN0_ldpc;
        else
            coding_gains(i) = NaN;
        end
    end
    
    fprintf('编码增益分析:\n');
    for i = 1:length(target_bers)
        fprintf('在BER=%.0e时,编码增益: %.2f dB\n', target_bers(i), coding_gains(i));
    end
end

5. 不同参数的影响分析

5.1 不同编码速率比较

function compare_code_rates()
    % 比较不同编码速率的LDPC性能
    
    EbN0_dB = 0:0.5:5;
    code_rates = [1/3, 1/2, 2/3, 3/4];
    
    figure;
    colors = ['r', 'g', 'b', 'm'];
    
    for i = 1:length(code_rates)
        rate = code_rates(i);
        
        % 简化的性能估计
        EbN0_linear = 10.^(EbN0_dB/10);
        ber_approx = 0.5 * erfc(sqrt(EbN0_linear * rate));
        
        semilogy(EbN0_dB, ber_approx, [colors(i) '-'], ...
                'LineWidth', 2, 'DisplayName', sprintf('速率 = %.2f', rate));
        hold on;
    end
    
    % 未编码参考
    ber_uncoded = 0.5 * erfc(sqrt(10.^(EbN0_dB/10)));
    semilogy(EbN0_dB, ber_uncoded, 'k--', 'LineWidth', 2, 'DisplayName', '未编码');
    
    grid on;
    xlabel('Eb/N0 (dB)');
    ylabel('误码率下界');
    title('不同LDPC编码速率性能比较');
    legend;
end

6. 结论与分析

通过上述仿真和分析,可以得出以下关键结论:

  1. 编码增益:LDPC编码在中等至高信噪比区域可提供3-8dB的编码增益
  2. 瀑布区特性:LDPC码具有明显的"瀑布区",在特定信噪比以上误码率急剧下降
  3. 错误平层:在低误码率区域,LDPC码可能出现错误平层
  4. 复杂度权衡:编码增益的获得以增加编解码复杂度为代价

参考代码 信息通过LDPC编解码误码率与未编码信息误码率比较 www.youwenfan.com/contentcnm/79991.html

典型性能特征:

  • 在BER=1e-5时,1/2码率的LDPC码可比未编码系统节省约4-6dB的功率
  • 编码速率越低,编码增益越大,但频谱效率越低
  • 迭代次数增加可改善性能,但有边际效应
posted @ 2025-12-01 17:49  令小飞  阅读(1)  评论(0)    收藏  举报