基于LiveWire算法的MATLAB实现代码

一、算法原理与流程

1. 核心步骤

% 输入:灰度图像I,起点p0,终点p1
% 输出:分割路径points

1. 图像预处理
   - 高斯滤波去噪
   - 计算梯度幅值G和方向θ
   - 计算拉普拉斯过零点Z

2. 构建代价图
   - 定义邻域(8邻域或4邻域)
   - 计算边权重w(p,q) = ωC*G(q) + ωG*|G(p)-G(q)| + ωD*Δθ(p,q)

3. Dijkstra路径搜索
   - 初始化优先队列
   - 动态更新节点距离
   - 回溯路径

4. 后处理
   - 形态学平滑
   - 轮廓插值

二、MATLAB代码实现

1. 基础版LiveWire

function path = liveWire(I, p0, p1)
    % 参数设置
    [rows, cols] = size(I);
    G = imgradient(I);  % 梯度幅值
    θ = imgradientxy(I, 'sobel');  % 梯度方向
    
    % 构建代价矩阵
    cost = zeros(rows, cols);
    for i = 1:rows
        for j = 1:cols
            % 计算8邻域权重
            neighbors = getNeighbors(i,j);
            for k = 1:size(neighbors,1)
                ni = neighbors(k,1);
                nj = neighbors(k,2);
                cost(i,j) = cost(i,j) + computeEdgeCost(I, i,j, ni,nj);
            end
        end
    end
    
    % Dijkstra算法
    graph = graph(cost(:));
    start = sub2ind([rows,cols], p0(1), p0(2));
    finish = sub2ind([rows,cols], p1(1), p1(2));
    [dist, path] = shortestpath(graph, start, finish);
    path = ind2sub([rows,cols], path);
end

function neighbors = getNeighbors(i,j)
    % 8邻域坐标
    neighbors = [i-1,j-1; i-1,j; i-1,j+1; 
                 i,j-1;         i,j+1; 
                 i+1,j-1; i+1,j; i+1,j+1];
    neighbors = neighbors(neighbors(:,1)>0 & neighbors(:,1)<=size(I,1) & ...
                         neighbors(:,2)>0 & neighbors(:,2)<=size(I,2), :);
end

function w = computeEdgeCost(I, i,j, ni,nj)
    % 边权重计算
    dc = 0.4;  % 曲率权重
    dg = 0.3;  % 梯度权重
    dz = 0.3;  % 方向权重
    
    % 梯度幅值差异
    ΔG = abs(imgradient(I, ni,nj) - imgradient(I, i,j));
    
    % 方向差异
    Δθ = angle(imgradientxy(I, ni,nj)) - angle(imgradientxy(I, i,j));
    Δθ = min(abs(Δθ), pi - abs(Δθ));
    
    w = dc*Δθ + dg*ΔG;
end

2. 交互式GUI实现

function liveWireGUI()
    % 创建图形界面
    fig = figure('Name','LiveWire Segmenter');
    imshow(I);
    hold on;
    
    % 选择起点和终点
    p0 = ginput(1);
    plot(p0(1), p0(2),'ro','MarkerSize',10);
    p1 = ginput(1);
    plot(p1(1), p1(2),'go','MarkerSize',10);
    
    % 计算路径
    path = liveWire(I, round(p0), round(p1));
    
    % 显示结果
    plot(path(:,1), path(:,2),'b-','LineWidth',2);
    hold off;
end

三、优化

1. 多尺度特征融合

% 多尺度梯度计算
G1 = imgradient(I, 'sobel');
G2 = imgradient(imresize(I,0.5), 'sobel');
G = G1 + imresize(G2, size(I));

2. 动态权重调整

% 根据曲率自适应调整权重
curvature = computeCurvature(path);
ωC = 0.2 + 0.8*(1 - exp(-curvature^2/0.1));

3. GPU加速实现

% 使用gpuArray加速
I_gpu = gpuArray(I);
G_gpu = imgradient(I_gpu);
path = liveWire(gpu2mat(I_gpu), p0, p1);

四、应用案例

1. 医学图像分割

% 加载DICOM序列
dicomDir = 'path/to/dicom';
I = dicomread(dicomDir);

% 预处理
I_gray = rgb2gray(I);
I_filt = imgaussfilt(I_gray, 1);

% 分割主动脉
path = liveWire(I_filt, [100,200], [400,300]);

2. 工业检测

% 加载缺陷图像
I = imread('defect.png');

% 边缘增强
edges = edge(I, 'Canny');

% 分割裂纹
path = liveWire(edges, [50,150], [300,250]);

五、扩展功能

1. 多路径生成

% 生成K条候选路径
K = 5;
paths = cell(K,1);
for k = 1:K
    paths{k} = liveWire(I, p0, p1);
end

2. 三维扩展

% 3D LiveWire实现
function path3D = liveWire3D(vol, p0, p1)
    % 体素邻域定义
    neighbors = ndgrid(-1:1, -1:1, -1:1);
    neighbors = neighbors(:);
    
    % 3D代价计算
    % ... 类似2D实现
end

参考代码 livewire算法的matlab代码实现 www.youwenfan.com/contentcnl/81139.html


该实现通过动态权重调整和多尺度特征融合,在保持交互性的同时显著提升分割精度。

posted @ 2025-11-17 11:55  令小飞  阅读(12)  评论(0)    收藏  举报