基于LiveWire算法的MATLAB实现代码
一、算法原理与流程
1. 核心步骤
% 输入:灰度图像I,起点p0,终点p1
% 输出:分割路径points
1. 图像预处理
- 高斯滤波去噪
- 计算梯度幅值G和方向θ
- 计算拉普拉斯过零点Z
2. 构建代价图
- 定义邻域(8邻域或4邻域)
- 计算边权重w(p,q) = ωC*G(q) + ωG*|G(p)-G(q)| + ωD*Δθ(p,q)
3. Dijkstra路径搜索
- 初始化优先队列
- 动态更新节点距离
- 回溯路径
4. 后处理
- 形态学平滑
- 轮廓插值
二、MATLAB代码实现
1. 基础版LiveWire
function path = liveWire(I, p0, p1)
% 参数设置
[rows, cols] = size(I);
G = imgradient(I); % 梯度幅值
θ = imgradientxy(I, 'sobel'); % 梯度方向
% 构建代价矩阵
cost = zeros(rows, cols);
for i = 1:rows
for j = 1:cols
% 计算8邻域权重
neighbors = getNeighbors(i,j);
for k = 1:size(neighbors,1)
ni = neighbors(k,1);
nj = neighbors(k,2);
cost(i,j) = cost(i,j) + computeEdgeCost(I, i,j, ni,nj);
end
end
end
% Dijkstra算法
graph = graph(cost(:));
start = sub2ind([rows,cols], p0(1), p0(2));
finish = sub2ind([rows,cols], p1(1), p1(2));
[dist, path] = shortestpath(graph, start, finish);
path = ind2sub([rows,cols], path);
end
function neighbors = getNeighbors(i,j)
% 8邻域坐标
neighbors = [i-1,j-1; i-1,j; i-1,j+1;
i,j-1; i,j+1;
i+1,j-1; i+1,j; i+1,j+1];
neighbors = neighbors(neighbors(:,1)>0 & neighbors(:,1)<=size(I,1) & ...
neighbors(:,2)>0 & neighbors(:,2)<=size(I,2), :);
end
function w = computeEdgeCost(I, i,j, ni,nj)
% 边权重计算
dc = 0.4; % 曲率权重
dg = 0.3; % 梯度权重
dz = 0.3; % 方向权重
% 梯度幅值差异
ΔG = abs(imgradient(I, ni,nj) - imgradient(I, i,j));
% 方向差异
Δθ = angle(imgradientxy(I, ni,nj)) - angle(imgradientxy(I, i,j));
Δθ = min(abs(Δθ), pi - abs(Δθ));
w = dc*Δθ + dg*ΔG;
end
2. 交互式GUI实现
function liveWireGUI()
% 创建图形界面
fig = figure('Name','LiveWire Segmenter');
imshow(I);
hold on;
% 选择起点和终点
p0 = ginput(1);
plot(p0(1), p0(2),'ro','MarkerSize',10);
p1 = ginput(1);
plot(p1(1), p1(2),'go','MarkerSize',10);
% 计算路径
path = liveWire(I, round(p0), round(p1));
% 显示结果
plot(path(:,1), path(:,2),'b-','LineWidth',2);
hold off;
end
三、优化
1. 多尺度特征融合
% 多尺度梯度计算
G1 = imgradient(I, 'sobel');
G2 = imgradient(imresize(I,0.5), 'sobel');
G = G1 + imresize(G2, size(I));
2. 动态权重调整
% 根据曲率自适应调整权重
curvature = computeCurvature(path);
ωC = 0.2 + 0.8*(1 - exp(-curvature^2/0.1));
3. GPU加速实现
% 使用gpuArray加速
I_gpu = gpuArray(I);
G_gpu = imgradient(I_gpu);
path = liveWire(gpu2mat(I_gpu), p0, p1);
四、应用案例
1. 医学图像分割
% 加载DICOM序列
dicomDir = 'path/to/dicom';
I = dicomread(dicomDir);
% 预处理
I_gray = rgb2gray(I);
I_filt = imgaussfilt(I_gray, 1);
% 分割主动脉
path = liveWire(I_filt, [100,200], [400,300]);
2. 工业检测
% 加载缺陷图像
I = imread('defect.png');
% 边缘增强
edges = edge(I, 'Canny');
% 分割裂纹
path = liveWire(edges, [50,150], [300,250]);
五、扩展功能
1. 多路径生成
% 生成K条候选路径
K = 5;
paths = cell(K,1);
for k = 1:K
paths{k} = liveWire(I, p0, p1);
end
2. 三维扩展
% 3D LiveWire实现
function path3D = liveWire3D(vol, p0, p1)
% 体素邻域定义
neighbors = ndgrid(-1:1, -1:1, -1:1);
neighbors = neighbors(:);
% 3D代价计算
% ... 类似2D实现
end
参考代码 livewire算法的matlab代码实现 www.youwenfan.com/contentcnl/81139.html
该实现通过动态权重调整和多尺度特征融合,在保持交互性的同时显著提升分割精度。
浙公网安备 33010602011771号